Autor: |
Galassi, Mariel E., Tessaro, Veronica, Gervais, Benoit, Beuve, Michael |
Přispěvatelé: |
Instituto de Física de Rosario [Santa Fe] (IFIR), Consejo Nacional de Investigaciones Científicas y Técnicas [Buenos Aires] (CONICET)-Facultad de Ciencias Exactas, Ingenieria y Agrimensura [Rosario] (FCEIA), Universidad Nacional de Rosario [Santa Fe]-Universidad Nacional de Rosario [Santa Fe], Institut de Physique Nucléaire de Lyon (IPNL), Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3), Centre de recherche sur les Ions, les MAtériaux et la Photonique (CIMAP - UMR 6252), Université de Caen Normandie (UNICAEN), Normandie Université (NU)-Normandie Université (NU)-École Nationale Supérieure d'Ingénieurs de Caen (ENSICAEN), Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS), Rayet, Béatrice, Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche sur les Matériaux Avancés (IRMA), Normandie Université (NU)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Rouen Normandie (UNIROUEN), Normandie Université (NU)-Institut national des sciences appliquées Rouen Normandie (INSA Rouen Normandie), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université de Rouen Normandie (UNIROUEN), Institut National des Sciences Appliquées (INSA)-Normandie Université (NU)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS) |
Jazyk: |
angličtina |
Rok vydání: |
2018 |
Předmět: |
|
Popis: |
References : [1] B. Gervais, M. Beuve, G. Olivera and M. Galassi. Rad. Phys. Chem. 75, 493-513 (2006). [2] R. Rivarola, M.E. Galassi, P.D. Fainstein, C. Champion. Book Series "Advances in Quantum Chemistry: Theory of heavy ion collision physics in hadron therapy". Chapter nine. Elsevier Inc. Copenhagen, Dinamarca. (2013). [3] M.E. Galassi, R.D. Rivarola and P.D. Fainstein. Phy. Rev. A 75, 052708 (2007).; International audience; The study of multiple ionization of molecules by swift ion impact is of great interest in many subfields of physics, chemistry, astrophysics and ion-beam cancer therapy. During the irradiation of human tissues with such ions, the biological molecules are ionized and excited. Mainly, in the region of maximum energy deposition (known as the Bragg’s peak), multi-electron processes occur (transfer-ionization, multiple ionization, etc). Experimental cross sections for multi-electron emission by heavy ion impact on molecules are scarce and the development of predictive accurate theoretical models to calculate multiple-ionization cross sections (MICS) is necessary. In previous works, exclusive MICS of water molecules by ion impact were calculated in the framework of the Independent Particle Model (IPM), employing a binomial distribution in order to take into account contributions from different molecular target orbitals. The single particle probabilities as a function of the impact parameter were calculated using two different methods: the Exponential Model (EM) and the Continuum Distorted Wave - Eikonal Initial State (CDW-EIS) approximation [1-2]. Within the Exponential Model, the single-electron emission probabilities for each shell are described by decreasing exponential functions with adjustable parameters to reproduce net-ionization cross sections. For the case of proton impact on Ne and Ar, MICS-EM was found in remarkable agreement with experimental data [3]. In the present work, we extend the use of the MICS-EM to monocentric Ne-like molecules (H2O, CH4, NH3). The post-collisional contributions, that dominate the MICS at high impact energy, are considered by extending the model used for Ne [3]. We analyze the dependence of MICS with the energy and charge of the projectile. For these light molecules good agreement with experimental data is obtained. |
Databáze: |
OpenAIRE |
Externí odkaz: |
|