量子論におけるブラ・ケット表記
Autor: | Yamasaki, Katsuyoshi |
---|---|
Jazyk: | japonština |
Rok vydání: | 2023 |
Předmět: | |
Popis: | 多くの量子力学のテキストに,波動関数の積の積分 ∫Ψm*Ψmdτ (1) がブラ・ケット表記 (2) によりシンプルに表すことができると書かれている。その際,ブラ はそれぞれ次のように =Ψm (4) 波動関数と対応しており,互いに複素共役な波動関数を表していると説明される(ことが多い)。しかし,この解説に対して下記のような疑問(や要望)は生じないだろうか。 Q1. ブラとケットが互いに複素共役な波動関数を表すとして,その積である式(2)がなぜ積分という意味をもつのだろうか?ブラとケットが組み合わさるときだけ積分の意味をもつというルール3を設けるのだろうか? Q2. 波動関数群が正規直交系4をなすとき,波動関数自身の内積が1,異なる波動関数間の内積が0であることを, ∫Ψm*Ψmdτ==1 (5) ∫Ψm*Ψndτ==0 (6) と表す。式(5)や式(6)の左辺の積分は数学(代数学)の内積の定義を満たすから,波動関数もベクトルであるといえるが,波動関数がベクトル的に扱えることや“直交"することをもう少し(数ベクトルや幾何ベクトルのように)直感的に理解することはできないだろうか?本書は,上記2点に関連してブラ・ケット表記の意味を理解し,その有効性と威力を活用するために書かれたmonographである 第7版第4刷 |
Databáze: | OpenAIRE |
Externí odkaz: |