Methodology to simulate veneer based structural components for static and crash load cases

Autor: Piazza, Giovanni, Heyner, David Benjamin, Beeh, Elmar, Friedrich, Horst
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Popis: The increased public interest in green technology combined with new environmental policies results in the need for light-weight vehicles with a reduced global environmental impact. A method that is gaining importance is the reduction of the cradle-to-grave carbon footprint of utilized materials. For structural components, one promising approach is the utilization of biomaterials such as veneer based hybrid materials since wood is a natural carbon storage. The specific properties of wood are comparable to aluminum and magnesium, and thus have the potential to replace some structural and semi-structural components of a vehicle. When required, the hybridization of veneer based materials with traditional materials, such as metal sheets, can further increase its structural performance. While it is technologically possible to implement such a material concept, a key challenge is the application-oriented simulation of non-hybridized and hybridized wooden structures. A suitable simulation method and material model must be found and validated. At the Institute of Vehicle Concepts of the German Aerospace Center, the methodology to simulate beech-veneer based structural components for static and crash load cases has been developed over the last three years. The characteristics of the veneer were determined in order to fit a material model which was then implemented in various simulation approaches for the wooden structures. The findings were transferred to simulate hybridized structures. This talk presents an overview of the different approaches chosen and their respective results to illustrate the high potential of veneer based materials for vehicle body applications. The development and results of the different simulation approaches and material models are based on structural components made of veneer based hybrid materials that were developed in cooperation with partners from research institutes and the rail and automotive industry. A fully qualified simulation approach and material model will contribute to the structural application of non-hybridized and hybridized veneer based composites in modern vehicle structures.
Databáze: OpenAIRE