Study of Cesium migration mechanisms in stoichiometric and hyper-stoichiometric uranium dioxide : influence of Molybdenum

Autor: Panetier, Clémentine
Přispěvatelé: STAR, ABES, Institut de Physique des 2 Infinis de Lyon (IP2I Lyon), Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Centre National de la Recherche Scientifique (CNRS), Université de Lyon, Nathalie Moncoffre, Yves Pipon
Jazyk: francouzština
Rok vydání: 2019
Předmět:
Zdroj: Matériaux. Université de Lyon, 2019. Français. ⟨NNT : 2019LYSE1248⟩
Popis: In the nuclear fuel UO2, which is widely used in Pressurized Water Reactor (PWR), Cs is a volatile element and is one of the most abundant fission product (FP). Furthermore, 137Cs is known to be highly radiotoxic. During a hypothetical accident, release of Cs would be particularly problematic for the environment. Hence, study of this element is of major concern for nuclear safety. To assess this issue, the French nuclear safety institute (IRSN) develops codes to predict FP release from nuclear fuel in normal and accidental conditions. This code requires fundamental data on FP behavior such as diffusion coefficient of these elements in UO2 as a function of temperature and atmosphere conditions (leading to UO2+x formation in oxidative conditions). The aim of this PhD, supported by the IRSN, is to study Cs migration in stoichiometric and hyper-stoichiometric uranium dioxide with and without the presence of Mo, in normal and accidental conditions of a PWR. This latter element is also an abundant FP, which is important to consider because it acts as an oxygen buffer in the fuel and may interact chemically with Cs. Such interactions may affect Cs behavior, hence its release from the fuel. Therefore, Cs-Mo interactions are considered in our study. The experimental procedure consists in simulating the Cs and/or Mo presence in UO2 and UO2+x pellets by ion implantation of stable isotopes 133Cs and/or 95Mo. Then, high temperature annealing (950 °C - 1600 °C) under controlled atmosphere or electronic excitations induced by irradiation coupled with temperature are performed to induce Cs and Mo migration. Secondary Ion Mass Spectrometry (SIMS) is used to follow the concentration profile evolution of these elements, allowing extracting effective diffusion coefficients of Cs in UO2 and UO2+x as a function of irradiation or thermal treatment. Microstructure characterizations were made by Raman spectroscopy and transmission electron microscopy (TEM). We show that Cs is mobile in UO2 under reducing atmosphere, even though some of the Cs is trapped in Cs-bubbles located near the surface. We evidence that Mo presence prevents Cs to be mobile. The same tendency is observed in UO2+x under oxidizing atmosphere. Nevertheless, Cs immobilization mechanisms in presence of Mo vary upon redox conditions used during annealing. In reducing conditions, TEM experiments showed formation of Cs bubbles associated with Mo metallic precipitates in co-implanted samples. In oxidative conditions, absence of Cs mobility could be explained by Mo oxidation leading to possible Cs-Mo chemical interactions. For the first time, semi-empirical potentials were used to perform molecular dynamic (MD) calculations on Cs and Mo diffusion in UO2 and UO2+x. These simulations also allowed characterizing oxygen diffusion mechanisms in these matrixes in presence of Cs and Mo
Dans le combustible nucléaire UO2, utilisé dans les réacteurs à eau pressurisée (REP), le Cs, élément volatil compte parmi les produits de fission (PF) les plus abondamment produits. De plus, l’isotope 137Cs est connu pour être particulièrement radiotoxique. En cas d’accident, le relâchement de cet isotope est donc problématique et son étude est cruciale pour la sûreté nucléaire. En France, l’IRSN (Institut de Radioprotection et de sureté nucléaire) développe des codes de prédictions du relâchement des PF depuis le combustible, tels que MFPR (Module for Fission Product Release). Ces codes nécessitent d’être alimentés par des données fondamentales sur le comportement des PF. Ainsi, la connaissance des coefficients de diffusion de ces éléments dans la matrice combustible en fonction de la température et de l’atmosphère (pouvant oxyder le combustible en UO2+x) est primordiale. Dans ce contexte, l’objectif de cette thèse, menée en collaboration avec l’IRSN, est d’étudier la migration du Cs dans le dioxyde d’uranium stœchiométrique et sur-stœchiométrique, en conditions représentatives d’un fonctionnement normal et accidentel d’un REP, avec et sans la présence de Mo. Ce dernier est un PF abondamment produit qui agit comme tampon d’oxydation du combustible et est capable d’avoir des interactions chimiques avec le césium. De telles interactions pourraient affecter le comportement du Cs, et donc son relâchement depuis le combustible. Il a donc été nécessaire d’envisager les éventuelles interactions entre le Cs et le Mo dans le cadre de notre étude. La démarche expérimentale a consisté à simuler la présence de Cs et/ou Mo dans des pastilles d’UO2 ou d’UO2+x. par implantations ioniques des isotopes stables 133Cs et/ou 95Mo. Des recuits à haute température (950-1600°C) sous atmosphère contrôlée ou des irradiations en régime électronique couplées en température ont ensuite été réalisés, permettant d’induire la migration du Cs et du Mo. La spectrométrie de masse à ionisation secondaire (SIMS) a été utilisée pour suivre l’évolution des profils de concentration des éléments implantés, permettant d’extraire les coefficients de diffusion apparents du Cs dans UO2 et UO2+x en fonction des différents traitements. Une étude complémentaire de la microstructure a été réalisée par spectroscopie Raman et microscopie électronique en transmission (MET). Le Cs est très mobile dans UO2 sous atmosphère réductrice même si une partie et piégée sous forme de bulles à faible profondeur. Nous avons mis en évidence que la présence de Mo diminuait fortement cette mobilité. La même tendance est observée dans UO2+x sous atmosphère oxydante. Néanmoins les mécanismes d’immobilisation du Cs par le Mo diffèrent selon les conditions redox de recuit. En atmosphère réductrice, les expériences MET ont montré la formation de paires bulles de Cs-précipités métalliques de Mo dans les échantillons co-implantés. En atmosphère oxydante, l’absence de mobilité du Cs pourrait être liée à l’oxydation du Mo rendant possible des interactions chimiques Cs-Mo. Pour la première fois, des potentiels semi-empiriques ont été utilisés pour réaliser des calculs de dynamique moléculaire sur la diffusion du Cs et du Mo dans UO2 et UO2+x. Ces calculs nous ont aussi permis de caractériser les mécanismes de diffusion de l’oxygène dans ces matériaux en présence de ces deux PF
Databáze: OpenAIRE