Combining subword representations into word-level representations in the transformer architecture
Autor: | Casas Manzanares, Noé, Ruiz Costa-Jussà, Marta, Rodríguez Fonollosa, José Adrián |
---|---|
Přispěvatelé: | Universitat Politècnica de Catalunya. Doctorat en Teoria del Senyal i Comunicacions, Universitat Politècnica de Catalunya. Departament de Ciències de la Computació, Universitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions, Universitat Politècnica de Catalunya. VEU - Grup de Tractament de la Parla |
Rok vydání: | 2020 |
Předmět: | |
Zdroj: | UPCommons. Portal del coneixement obert de la UPC Universitat Politècnica de Catalunya (UPC) |
Popis: | In Neural Machine Translation, using word-level tokens leads to degradation in translation quality. The dominant approaches use subword-level tokens, but this increases the length of the sequences and makes it difficult to profit from word-level information such as POS tags or semantic dependencies. We propose a modification to the Transformer model to combine subword-level representations into word-level ones in the first layers of the encoder, reducing the effective length of the sequences in the following layers and providing a natural point to incorporate extra word-level information. Our experiments show that this approach maintains the translation quality with respect to the normal Transformer model when no extra word-level information is injected and that it is superior to the currently dominant method for incorporating word-level source language information to models based on subword-level vocabularies. This work is partially supported by Lucy Software / United Language Group (ULG) and the Catalan Agency for Management of University and Research Grants (AGAUR) through an Industrial PhD Grant. This work is also supported in part by the the Spanish Ministerio de Economía y Competitividad, the European Regional Development Fund through the postdoctoral senior grant Ramón y Cajal and by the Agencia Estatal de Investigación through the project EUR2019-103819. |
Databáze: | OpenAIRE |
Externí odkaz: |