Manifold learning algorithms applied to structural damage classification

Autor: León Medina, Jersson Xavier, Anaya Vejar, Maribel, Tibaduiza Burgos, Diego Alexander, Pozo Montero, Francesc
Přispěvatelé: Universitat Politècnica de Catalunya. Doctorat en Enginyeria Sísmica i Dinàmica Estructural, Universitat Politècnica de Catalunya. Departament de Matemàtiques, Universitat Politècnica de Catalunya. CoDAlab - Control, Modelització, Identificació i Aplicacions
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
DOI: 10.22055/JACM.2020.33055.2139
Popis: A comparative study of four manifold learning algorithms was carried out to perform the dimensionality reduction process within a proposed methodology for damage classification in structural health monitoring (SHM). Isomap, locally linear embedding (LLE), stochastic proximity embedding (SPE), and laplacian eigenmaps were used as manifold learning algorithms. The methodology included several stages that comprised: data normalization, dimensionality reduction, classification through K- Nearest Neighbors (KNN) machine learning model and finally holdout cross-validation with 25% of data for training and the remaining 75% of data for testing. Results evaluated in an experimental setup showed that the best classification accuracy was 100% when the methodology uses isomap algorithm with a hyperparameter k of 170 and 8 dimensions as a feature vector at the input to the KNN classification machine.
Databáze: OpenAIRE