Classification de relations pour l'intelligence économique et concurrentielle

Autor: Khaldi, Hadjer, Abdaoui, Amine, Benamara, Farah, Sigel, Grégoire, Aussenac-Gilles, Nathalie
Přispěvatelé: MEthodes et ingénierie des Langues, des Ontologies et du DIscours (IRIT-MELODI), Institut de recherche en informatique de Toulouse (IRIT), Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées, Geotrend, Université Toulouse III - Paul Sabatier (UT3), Centre National de la Recherche Scientifique (CNRS), Benzitoun, Christophe, Braud, Chloé, Huber, Laurine, Langlois, David, Ouni, Slim, Pogodalla, Sylvain, Schneider, Stéphane, Institut de Recherche en Informatique de Toulouse (irit) & Geotrend, Institut de Recherche en Informatique de Toulouse (irit)
Jazyk: francouzština
Rok vydání: 2020
Předmět:
Zdroj: Actes de JEP-TALN-RECITAL 2020
6e conférence conjointe Journées d'Études sur la Parole (JEP, 33e édition), Traitement Automatique des Langues Naturelles (TALN, 27e édition), Rencontre des Étudiants Chercheurs en Informatique pour le Traitement Automatique des Langues (RÉCITAL, 22e édition). Volume 2 : Traitement Automatique des Langues Naturelles
6e conférence conjointe Journées d'Études sur la Parole (JEP, 33e édition), Traitement Automatique des Langues Naturelles (TALN, 27e édition), Rencontre des Étudiants Chercheurs en Informatique pour le Traitement Automatique des Langues (RÉCITAL, 22e édition). Volume 2 : Traitement Automatique des Langues Naturelles, Jun 2020, Nancy, France. pp.27-39
Actes de la 6e conférence conjointe Journées d'Études sur la Parole (JEP, 31e édition), Traitement Automatique des Langues Naturelles (TALN, 27e édition), Rencontre des Étudiants Chercheurs en Informatique pour le Traitement Automatique des Langues (RÉCITAL, 22e édition). Volume 2 : Traitement Automatique des Langues Naturelles
6e conférence conjointe Journées d'Études sur la Parole (JEP, 31e édition), Traitement Automatique des Langues Naturelles (TALN, 27e édition), Rencontre des Étudiants Chercheurs en Informatique pour le Traitement Automatique des Langues (RÉCITAL, 22e édition)
6e conférence conjointe Journées d'Études sur la Parole (JEP, 31e édition), Traitement Automatique des Langues Naturelles (TALN, 27e édition), Rencontre des Étudiants Chercheurs en Informatique pour le Traitement Automatique des Langues (RÉCITAL, 22e édition), 2020, Nancy, France. pp.27-39
Popis: Relation extraction aims at identifying semantic relations that may hold between entities in raw text. This task has been widely studied in the litterature focusing either on extracting generic relations like hyperonymy or domain-dependent relations like those linking genes and proteins. In this paper, we aim at extracting business relations between two organizations from web textual contents. In particular, we propose BIZREL, the first French annotated dataset for business relations as well as a supervised approach based on several neural architectures to classify these relations. Our results are encouraging and constitute a first step towards economic and competitive intelligence from French texts.
L’extraction de relations reliant des entités par des liens sémantiques à partir de texte a fait l’objet de nombreux travaux visant à extraire des relations génériques comme l’hyperonymie ou spécifiques comme des relations entre gènes et protéines. Dans cet article, nous nous intéressons aux relations économiques entre deux entités nommées de type organisation à partir de textes issus du web. Ce type de relation, encore peu étudié dans la littérature, a pour but l’identification des liens entre les acteurs d’un secteur d’activité afin d’analyser leurs écosystèmes économiques. Nous présentons B IZ R EL, le premier corpus français annoté en relations économiques, ainsi qu’une approche supervisée à base de différentes architectures neuronales pour la classification de ces relations. L’évaluation de ces modèles montre des résultats très encourageants, ce qui est un premier pas vers l’intelligence économique et concurrentielle à partir de textes pour le français.
Databáze: OpenAIRE