Résultats de compacité et régularité dans un modèle de Ginzburg-Landau non-local issu du micromagnétisme. Lemme de Poincaré et régularité du domaine
Autor: | Nguyen, Hoang Phuong |
---|---|
Přispěvatelé: | Institut de Mathématiques de Toulouse UMR5219 (IMT), Université Toulouse Capitole (UT Capitole), Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université Toulouse - Jean Jaurès (UT2J), Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier - Toulouse III, Pierre Bousquet, Radu Ignat, Institut National des Sciences Appliquées - Toulouse (INSA Toulouse), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS) |
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
Équation de divergence
Compactness Divergence equation Néel wall Ginzburg-Landau theory Harmonic maps Point critique Espaces de Hölder et de Sobolev Condition de Dirichlet Paroi de Néel Micromagnetics Compacité Application harmonique Critical point Hölder and Sobolev spaces Regularity Dirichlet condition Lemme de Poincaré Théorie de Ginzburg-Landau [MATH.MATH-OC]Mathematics [math]/Optimization and Control [math.OC] Régularité Micromagnétisme Vortex Poincaré lemma |
Zdroj: | Optimization and Control [math.OC]. Université Paul Sabatier-Toulouse III, 2019. English. ⟨NNT : 2019TOU30315⟩ |
Popis: | In this thesis, we study some boundary value problems involving micromagnetic models and differential forms. In the first part, we consider a nonlocal Ginzburg-Landau model arising in micromagnetics with an imposed Dirichlet boundary condition. The model typically involves S²-valued maps with an energy functional depending on several parameters, which represent physical quantities. A first question concerns the compactness of magnetizations having the energies of several Néel walls of finite length and topo- logical defects when these parameters converge to 0. Our method uses techniques developed for Ginzburg-Landau type problems for the concentration of energy on vortex balls, together with an approximation argument of S²-valued vector fields by S¹-valued vector fields away from the vortex balls. We also carry out in detail the proofs of the C^infinite regularity in the interior and C(^1,alpha) regularity up to the boundary, for all alpha belong to (0, 1/2), of critical points of the model. In the second part, we study the Poincaré lemma, which states that on a simply connected domain every closed form is exact. We prove the Poincaré lemma on a domain with a Dirichlet boundary condition under a natural assumption on the regularity of the domain: a closed form ƒ in the Hölder space C(^r,alpha) is the differential of a C(^r+1,alpha) form, provided that the domain itself is C(^r+1,alpha). The proof is based on a construction by approximation, together with a duality argument. We also establish the corresponding statement in the setting of higher order Sobolev spaces.; Dans cette thèse, nous étudions des problèmes aux limites impliquant le modèle micro-magnétique et les formes différentielles. Dans la première partie, nous considérons un modèle non-local de Ginzburg-Landau apparaissant en micromagnétisme avec une condition au bord de type Dirichlet. Le modèle typique implique une fonctionelle d'énergie définie pour des applications des valeurs dans la sphère S² et qui depend de plusieurs paramètres, qui représentent des quantités physiques. Une première question concerne la compacité des aimantations ayant les énergies de quelques parois de Néel de longueur finie et des défauts topologiques lorsque ces paramètres convergent vers 0. Notre méthode utilise des techniques développées pour les problèmes de type Ginzburg-Landau sur la concentration d'énergie autour des vortex, avec un argument d'approximation des champs de vecteurs dans S² par des champs de vecteurs dans S¹ éloignés des vortex. Nous effectuons également en détail la preuve de la régularité C^infini à l'intérieur et la régularité C(^1,alpha) au bord, pour tous les alpha appartiennent à (0, 1/2 ), des points critiques du modèle. Dans la deuxième partie, nous étudions le lemme de Poincaré qui affirme que sur un domaine simplement connexe chaque forme fermée est exacte. Nous prouvons le lemme de Poincaré sur un domaine avec une condition aux limites de Dirichlet sous une hypothèse naturelle sur la régularité du domaine : une forme fermée ƒ dans l'espace C(^r,alpha) est la différentielle d'une forme C(^r+1,alpha) à condition que le domaine lui-même soit C(^r+1,alpha). La preuve est basée sur une construction par approximation, avec un argument de dualité. Nous établissons également le résultat correspondant dans le cadre d'espaces de Sobolev d'ordre supérieur. |
Databáze: | OpenAIRE |
Externí odkaz: |