Behavioral modeling for anomaly detection in industrial control systems

Autor: Garitano Garitano, Iñaki
Přispěvatelé: Uribeetxeberria Ezpeleta, Roberto, Zurutuza Ortega, Urko
Rok vydání: 2013
Předmět:
Zdroj: eBiltegia Repositorio digital de Mondragon Unibertsitatea
Universidad de Mondragón
instname
Popis: In 1990s, industry demanded the interconnection of corporate and production networks. Thus, Industrial Control Systems (ICSs) evolved from 1970s proprietary and close hardware and software to nowadays Commercial Off-The-Shelf (COTS) devices. Although this transformation carries several advantages, such as simplicity and cost-efficiency, the use of COTS hardware and software implies multiple Information Technology vulnerabilities. Specially tailored worms like Stuxnet, Duqu, Night Dragon or Flame showed their potential to damage and get information about ICSs. Anomaly Detection Systems (ADSs), are considered suitable security mechanisms for ICSs due to the repetitiveness and static architecture of industrial processes. ADSs base their operation in behavioral models that require attack-free training data or an extensive description of the process for their creation. This thesis work proposes a new approach to analyze binary industrial protocols payloads and automatically generate behavioral models synthesized in rules. In the same way, through this work we develop a method to generate realistic network traffic in laboratory conditions without the need for a real ICS installation. This contribution establishes the basis of future ADS as well as it could support experimentation through the recreation of realistic traffic in simulated environments. Furthermore, a new approach to correct delay and jitter issues is proposed. This proposal improves the quality of time-based ADSs by reducing the false positive rate. We experimentally validate the proposed approaches with several statistical methods, ADSs quality measures and comparing the results with traffic taken from a real installation. We show that a payload-based ADS is possible without needing to understand the payload data, that the generation of realistic network traffic in laboratory conditions is feasible and that delay and jitter correction improves the quality of behavioral models. As a conclusion, the presented approaches provide both, an ADS able to work with private industrial protocols, together with a method to create behavioral models for open ICS protocols which does not requite training data. 90. hamarkadan industriak sare korporatibo eta industrialen arteko konexioa eskatu zuen. Horrela, Kontrol Sistema Industrialak (KSI) 70. hamarkadako hardware eta software jabedun eta itxitik gaur eguneko gailu estandarretara egin zuten salto. Eraldaketa honek hainbat onura ekarri baditu ere, era berean gailu estandarren erabilerak hainbat Informazio Teknologietako (IT) zaurkortasun ekarri ditu. Espezialki diseinatutako zizareek, Stuxnet, Duque, Night Dragon eta Flame esaterako, ondorio latzak gauzatu eta informazioa lapurtzean beraien potentzia erakutsi dute. Anomalia Detekzio Sistemak (ADS) KSI-etako segurtasun mekanismo egoki bezala kontsideraturik daude, azken hauen errepikakortasun eta arkitektura estatikoa dela eta. ADS-ak erasorik gabeko datu garbietan ikasitako edo prozesuen deskripzio sakona behar duten jarrera modeloetan oinarritzen dira. Tesi honek protokolo industrial binarioak aztertu eta automatikoki jarrera modeloak sortu eta erregeletan sintetizatzen dituen ikuspegia proposatzen du. Era berean lan honen bidez laborategi kondizioetan sare trafiko errealista sortzeko metodo bat aurkezten da, KSI-rik behar ez duena. Ekarpen honek etorkizuneko ADS baten oinarriak finkatzen ditu, baita esperimentazioa bultzatu ere simulazio inguruneetan sare trafiko errealista sortuz. Gainera, atzerapen eta sortasun arazoak hobetzen dituen ekarpen berri bat egiten da. Ekarpen honek denboran oinarritutako ADS-en kalitatea hobetzen du, positibo faltsuen ratioa jaitsiz. Esperimentazio bidez ekarpen ezberdinak balioztatu dira, hainbat metodo estatistiko, ADS-en kalitate neurri eta trafiko erreal eta simulatuak alderatuz. Datu erabilgarriak ulertzeko beharrik gabeko ADS-ak posible direla demostratu dugu, trafiko errealista laborategi kondizioetan sortzea posible dela eta atzerapen eta sortasunaren zuzenketak jarrera modeloen kalitatea hobetzen dutela. Ondorio bezala, protokolo industrial pribatuekin lan egiteko ADS bat eta jarrera modeloa sortzeko entrenamendu daturik behar ez duen eta KSI-en protokolo irekiekin lan egiteko gai den metodoa aurkeztu dira. En los años 90, la industria proclamó la interconexión de las redes corporativas y los de producción. Así, los Sistemas de Control Industrial (SCI) evolucionaron desde el hardware y software propietario de los 70 hasta los dispositivos comunes de hoy en día. Incluso si esta adopción implicó diversas ventajas, como el uso de hardware y software comunes, conlleva múltiples vulnerabilidades. Gusanos especialmente desarrollados como Stuxnet, Duqu, Night Dragon y Flame mostraron su potencial para causar daños y obtener información. Los Sistemas de Detección de Anomalías (SDA) están considerados como mecanismos de seguridad apropiados para los SCI debido a la repetitividad y la arquitectura estática de los procesos industriales. Los SDA basan su operación en modelos de comportamiento que requieren datos libres de ataque o extensas descripciones de proceso para su creación. Esta tesis propone un nuevo enfoque para el análisis de los datos de la carga útil del tráfico de protocolos industriales binarios y la generación automática de modelos de comportamiento sintetizados en reglas. Así mismo, mediante este trabajo se ha desarrollado un método para generar tráfico de red realista en condiciones de laboratorio sin la necesidad de instalaciones SCI reales. Esta contribución establece las bases de un futuro SDA así como el respaldo a la experimentación mediante la recreación de tráfico realista en entornos simulados. Además, se ha propuesto un nuevo enfoque para la corrección de retraso y latencia. Esta propuesta mejora la calidad del SDA basados en tiempo reduciendo el ratio de falsos positivos. Mediante la experimentación se han validado los enfoques propuestos utilizando algunos métodos estadísticos, medidas de calidad de SDA y comparando los resultados con tráfico obtenido a partir de instalaciones reales. Se ha demostrado que son posibles los SDA basados en carga útil sin la necesidad de entender el contenido de la carga, que la generación de tráfico realista en condiciones de laboratorio es posible y que la corrección del retraso y la latencia mejoran la calidad de los modelos de comportamiento. Como conclusión, las propuestas presentadas proporcionan un SDA capaz de trabajar con protocolos privados de control industrial a la vez que un método para la creación de modelos de comportamiento para SCI sin la necesidad de datos de entrenamiento.
Databáze: OpenAIRE