Detecting cheating methods on unproctored internet tests
Autor: | Sanz, Susana, Luzardo, Mario, García, Carmen, Abad, Francisco José |
---|---|
Přispěvatelé: | UAM. Departamento de Psicología Social y Metodología |
Rok vydání: | 2020 |
Předmět: | |
Zdroj: | Biblos-e Archivo. Repositorio Institucional de la UAM instname Redined, Red de Información Educativa Ministerio de Educación, Cultura y Deporte (MECD) Biblos-e Archivo: Repositorio Institucional de la UAM Universidad Autónoma de Madrid |
Popis: | Background: Unproctored Internet Tests (UIT) are vulnerable to cheating attempts by candidates to obtain higher scores. To prevent this, subsequent procedures such as a verification test (VT) is carried out. This study compares five statistics used to detect cheating in Computerized Adaptive Tests (CATs): Guo and Drasgow’s Z-test, the Adaptive Measure of Change (AMC), Likelihood Ratio Test (LRT), Score Test, and Modified Signed Likelihood Ratio Test (MSLRT). Method: We simulated data from honest and cheating candidates to the UIT and the VT. Honest candidates responded to the UIT and the VT with their real ability level, while cheating candidates responded only to the VT, and different levels of cheating were simulated. We applied hypothesis tests, and obtained type I error and power rates. Results: Although we found differences in type I error rates between some of the procedures, all procedures reported quite accurate results with the exception of the Score Test. The power rates obtained point to MSLRT’s superiority in detecting cheating. Conclusions: We consider the MSLRT to be the best test, as it has the highest power rate and a suitable type I error rate. Antecedentes: las pruebas de selección en línea sin vigilancia (UIT) son vulnerables a intentos de falseamiento para obtener puntuaciones superiores. Por ello, en ocasiones se utilizan procedimientos de detección, como aplicar posteriormente un test de verifi cación (VT). El objetivo del estudio es comparar cinco contrastes estadísticos para la detección del falseamiento en Test Adaptativos Informatizados: Z-test de Guo y Drasgow, Medida de Cambio Adaptativa (AMC), Test de Razón de Verosimilitudes (LRT), Score Test y Modifi ed Signed Likelihood Ratio Test (MSLRT). Método: se simularon respuestas de participantes honestos y falseadores al UIT y al VT. Para los participantes honestos se simulaban en ambos en función de su nivel de rasgo real; para los falseadores, solo en el VT, y en el UIT se simulaban distintos grados de falseamiento. Después, se obtenían las tasas de error tipo I y potencia. Resultados: Se encontraron diferencias en las tasas de error tipo I entre algunos procedimientos, pero todos menos el Score Test se ajustaron al valor nominal. La potencia obtenida era signifi cativamente superior con el MSLRT. Conclusiones: consideramos que MSLRT es la mejor alternativa, ya que tiene mejor potencia y una tasa de error tipo I ajustada. This research was partially supported by Ministerio de Ciencia, Innovación y Universidades, Spain (Grant PSI2017-85022-P), European Social Fund, and Cátedra de Modelos y Aplicaciones Psicométricos (Instituto de Ingeniería del Conocimiento and Autonomous University of Madrid). |
Databáze: | OpenAIRE |
Externí odkaz: |