Mining and visualizing uncertain data objects and named data networking traffics by fuzzy self-organizing map

Autor: Karami, A., Manel Guerrero Zapata
Přispěvatelé: Universitat Politècnica de Catalunya. Departament d'Arquitectura de Computadors, Universitat Politècnica de Catalunya. CNDS - Xarxes de Computadors i Sistemes Distribuïts
Jazyk: angličtina
Rok vydání: 2014
Předmět:
Zdroj: Recercat. Dipósit de la Recerca de Catalunya
Universitat Jaume I
UPCommons. Portal del coneixement obert de la UPC
Universitat Politècnica de Catalunya (UPC)
Scopus-Elsevier
Popis: Uncertainty is widely spread in real-world data. Uncertain data-in computer science-is typically found in the area of sensor networks where the sensors sense the environment with certain error. Mining and visualizing uncertain data is one of the new challenges that face uncertain databases. This paper presents a new intelligent hybrid algorithm that applies fuzzy set theory into the context of the Self-Organizing Map to mine and visualize uncertain objects. The algorithm is tested in some benchmark problems and the uncertain traffics in Named Data Networking (NDN). Experimental results indicate that the proposed algorithm is precise and effective in terms of the applied performance criteria.
Databáze: OpenAIRE