Breather stripes and radial breathers of the two-dimensional sine-Gordon equation
Autor: | Kevrekidis, Panayotis G., Carretero-González, Ricardo, Cuevas-Maraver, Jesús, Frantzeskakis, Dimitri J., Caputo, Jean-Guy, Malomed, Boris A. |
---|---|
Přispěvatelé: | Universidad de Sevilla. Departamento de Física Aplicada I, Universidad de Sevilla. FQM280: Física no Lineal |
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | idUS: Depósito de Investigación de la Universidad de Sevilla Universidad de Sevilla (US) idUS. Depósito de Investigación de la Universidad de Sevilla instname |
Popis: | We revisit the problem of transverse instability of a 2D breather stripe of the sine-Gordon (sG) equation. A numerically computed Floquet spectrum of the stripe is compared to ana- lytical predictions developed by means of multiple-scale perturbation theory showing good agreement in the long-wavelength limit. By means of direct simulations, it is found that the instability leads to a breakup of the quasi-1D breather in a chain of interacting 2D radial breathers that appear to be fairly robust in the dynamics. The stability and dy- namics of radial breathers in a finite domain are studied in detail by means of numerical methods. Different families of such solutions are identified. They develop small-amplitude spatially oscillating tails (“nanoptera”) through a resonance of higher-order breather’s har- monics with linear modes (“phonons”) belonging to the continuous spectrum. These re- sults demonstrate the ability of the 2D sG model within our finite domain computations to localize energy in long-lived, self-trapped breathing excitations. Regional Government of Andalusia P18-RT-3480 MICINN, AEI and EU (FEDER program) PID2019-110430GBC21 |
Databáze: | OpenAIRE |
Externí odkaz: |