Online diagnosis methods, embedded and distributed in complex wired networks

Autor: Osman, Ousama
Přispěvatelé: Institut Pascal (IP), SIGMA Clermont (SIGMA Clermont)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])-Centre National de la Recherche Scientifique (CNRS), Université Clermont Auvergne [2017-2020], Pierre Bonnet, Françoise Paladian, STAR, ABES
Jazyk: francouzština
Rok vydání: 2020
Předmět:
Zdroj: Electronique. Université Clermont Auvergne [2017-2020], 2020. Français. ⟨NNT : 2020CLFAC038⟩
Popis: The research conducted in this thesis focuses on the diagnosis of complex wired networks using distributed reflectometry. It aims to develop new distributed diagnostic techniques for complex networks that allow data fusion as well as communication between reflectometers to detect, locate and characterize electrical faults (soft and hard faults). This collaboration between reflectometers solves the problem of fault location ambiguity and improves the quality of diagnosis. The first contribution is the development of a graph theory-based method for combining data between distributed reflectometers, thus facilitating the location of the fault. Then, the amplitude of the reflected signal is used to identify the type of fault and estimate its impedance. The latter is based on the regeneration of the signal by compensating for the degradation suffered by the diagnosis signal during its propagation through the network. The second contribution enables data fusion between distributed reflectometers in complex networks affected by multiple faults. To achieve this objective, two methods have been proposed and developed: the first is based on genetic algorithms (GA) and the second is based on neural networks (RN). These tools combined with distributed reflectometryallow automatic detection, location, and characterization of several faults in different types and topologies of wired networks. The third contribution proposes the use of information-carrying diagnosis signal to integrate communication between distributed reflectometers. It properly uses the phases of the MCTDR multi-carrier signal to transmit data. This communication ensures the exchange of useful information (such as fault location and amplitude) between reflectometers on the state of the cables, thus enabling data fusion and unambiguous fault location. Interference problems between the reflectometers are also addressed when they simultaneously inject their test signals into the network. These studies illustrate the efficiency and applicability of the proposed methods. They also demonstrate their potential to improve the performance of the current wired diagnosis systems to meet the need and the problem of detecting and locating faults that manufacturers and users face today in electrical systems to improve their operational safety.
Les recherches menées dans cette thèse portent sur le diagnostic de réseaux filaires complexes à l’aide de la réflectométrie distribuée. L’objectif est de développer de nouvelles technologies de diagnostic en ligne, distribuées des réseaux complexes permettant la fusion de données ainsi que la communication entre les réflectomètres pour détecter, localiser et caractériser les défauts électriques (francs et non francs). Cette collaboration entre les réflectomètres permet de résoudre le problème d’ambiguïté de localisation des défauts et d’améliorer la qualité du diagnostic. La première contribution concerne la proposition d’une méthode basée sur la théorie des graphes permettant la combinaison de données entre les réflectomètres distribués afin de faciliter la localisation d’un défaut. L’amplitude du signal réfléchi est ensuite utilisée pour identifier le type du défaut et estimer son impédance. Cette estimation est basée sur la régénération du signal en compensant la dégradation subie par le signal de diagnostic au cours de sa propagation à travers le réseau. La deuxième contribution permet la fusion des données de réflectomètres distribués dans des réseaux complexes affectés par de multiples défauts. Pour atteindre cet objectif, deux méthodes ont été proposées et développées : la première est basée sur les algorithmes génétiques (AG) et la deuxième est basée sur les réseaux de neurones (RN). Ces outils combinés avec la réflectométrie distribuée permettent la détection automatique, la localisation et la caractérisation de plusieurs défauts dans différents types et topologies des réseaux filaires. La troisième contribution propose d’intégrer la communication entre les réflectomètres via le signal de diagnostic porteur d’informations. Elle utilise adéquatement les phases du signal multiporteuses MCTDR pour transmettre des données. Cette communication assure l’échange d’informations utiles entre les réflectomètres sur l’état des câbles, permettant ainsi la fusion de données et la localisation des défauts sans ambiguïtés. Les problèmes d’interférence entre les réflectomètres sont également abordés lorsqu’ils injectent simultanément leurs signaux de test dans le réseau. Ces travaux de thèse ont montré l’efficacité des méthodes proposées pour améliorer les performances des systèmes de diagnostic filaire actuels en termes de diagnostic de certains défauts encore difficiles à détecter aujourd’hui, et d’assurer la sécurité de fonctionnement des systèmes électriques.
Databáze: OpenAIRE