Coupling Dispersive Shallow Water Models by Deriving Asymptotic Interface Operators

Autor: Galaz, José, Kazolea, Maria, Rousseau, Antoine
Přispěvatelé: Littoral, Environment: MOdels and Numerics (LEMON), Inria Sophia Antipolis - Méditerranée (CRISAM), Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut Montpelliérain Alexander Grothendieck (IMAG), Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Hydrosciences Montpellier (HSM), Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS), Certified Adaptive discRete moDels for robust simulAtions of CoMplex flOws with Moving fronts (CARDAMOM), Institut de Mathématiques de Bordeaux (IMB), Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Université Bordeaux Segalen - Bordeaux 2-Université Sciences et Technologies - Bordeaux 1 (UB)-Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)-Inria Bordeaux - Sud-Ouest, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Popis: We derive transmission operators for coupling linear Green-Naghdi equations (LGNE) with linear shallow water equations (LSWE) --the heterogeneous case -- or for coupling LGNE with LGNE --the homogeneous case. We derive them from a domain decomposition method (Neumann-Dirichlet) of the linear Euler equations by applying the same vertical-averaging process and truncation of the asymptotic expansion of the velocity field used in the derivation of the equations. We find that the new asymptotic transmision conditions also correspond to Neumann and Dirichlet operators. In the homogeneous case the method has the same convergence condition as the parent domain decomposition method but leads to a solution that is different from the monodomain solution due to an $O(\Delta x)$ term. In the heterogeneous case the Neumann-Dirichlet operators translate into a simple interpolation across the interface, with an extra $O(\Delta x^2)$ term. We show numerically that in this case the method introduces oscillations whose amplitude grows as the mesh is refined, thus leading to an unstable scheme.
Databáze: OpenAIRE