Popis: |
Multidisciplinary design optimization of mechatronic systems is a cumbersome task that considers integration of several engineering domains simultaneously. Hence, a holistic method should treat these engineering domains concurrently in the development phase and result in a solution for the system that is optimum considering several disciplines. Conventional design approaches for multi-disciplinary systems often consider each domain separately and integrate them at the end stage of the design. In these methods, the interactions and couplings between parameters from different disciplines can get lost and if any error arises at later design phase, it might lead to back-tracking and debugging, and hence, be time and cost consuming. Therefore, a method that includes concurrent design of mechanics, electronics, control, considering the impact of embedded control implementation (on physical design and performance) which results in an integrated system is of noteworthy importance. This dissertation summarizes research by the author regarding ideas and suggestions for an integrated multi-criteria design method. The purpose of this research is to enable an early-phase design that takes into account three domains (physical design, control design, and embedded control implementation) simultaneously. Therefore objectives, specifications and constraints from each domain are taken into account. The efficiency feature is enhanced by the use of an early-phase design method which reduces time and cost consuming debugging, and removes the necessity to have iterative design loops in later design phases. The method develops two types of components: physical and control. Physical components are basic mechanical/electrical elements which include three types of models: physical dimension, static properties, and dynamic behaviour models. Control components include control methods and dynamic performance constraints. The concept of a mechatronic system under design in the supporting software toolbox is configured using the components library. A multi-criteria optimization method is employed in a system level which yields an optimal solution for the system in terms of size, implementation cost, hardware cost and control performance. Using this system level optimization, there is no need to partition the problem or to integrate several optimization loops in the method. Four design cases are used to enable some features of the software toolbox and investigate capability of the method to handle multi-DOF nonlinear systems; and to highlight correlation between engineering domains and broaden the coverage of disciplines. The feasibility of the method is evaluated by variations of design tests for the design cases. Accordingly, mechanical and control components are studied, developed and integrated into the IDIOM (Integrated Design Optimization of Mechatronic Systems) software toolbox. Since the model of each component is treated separately in the design and modeling stage, any system configuration that uses the available components can be handled by the method. The contribution of the thesis can be summarized as follows: Multidisciplinary design method and investigation of couplings and correlations between engineering domains Models and co-design methods to include nonlinear multi-degree of freedom mechatronic systems Extended method to cover key aspects in discrete time systems, and key factors in embedded control implementation The goal of this thesis is to improve system development efficiency by integrating engineering domains in an early design phase. Accordingly, the method in this thesis is a fundamental move in evaluation of mechatronic systems design which assists in better system development and analysis. However, there is no single `best' approach for the design of mechatronic systems; the presented method in this thesis facilitates an efficient simultaneous integrated design optimization and has a broader coverage of engineering domains. The results achieved by the method ensure an optimum system solution in regards to the different involved engineering domains. Multidisciplinär designoptimering av mekatroniska system är en besvärlig uppgift som överväger integration av flera tekniska domäner samtidigt. Därför bör en holistisk metod behandla dessa tekniska domäner samtidigt i utvecklingsfasen och resultera i en lösning för systemet som är optimal med tanke på flera discipliner. Konventionella designmetoder för tvärvetenskapliga system överväger ofta varje domän separat och integrerar dem i slutskedet av designen. I dessa metoder kan interaktioner och kopplingar mellan parametrar från olika discipliner gå vilse och om något fel uppstår vid senare designfas kan det leda till bakspårning och felsökning och kan därför vara tid- och kostnadskrävande. Därför är en metod som inkluderar samtidig design av mekanik, elektronik, styrning, med tanke på effekterna av inbyggd kontrollimplementering (på fysisk design och prestanda) som resulterar i ett integrerat system av anmärkningsvärd betydelse. Denna avhandling sammanfattar författarens forskning om idéer och förslag på en integrerad designmetod med flera kriterier. Syftet med denna forskning är att möjliggöra en tidig fasdesign som tar hänsyn till tre domäner (fysisk design, kontrolldesign och inbäddad kontrollimplementering) samtidigt. Därför beaktas mål, specifikationer och begränsningar från varje domän. Effektivitetsfunktionen förbättras genom användning av en tidig fasdesignmetod som minskar tid och kostnadskrävande felsökning och tar bort behovet av att ha iterativa designslingor i senare designfaser. Metoden utvecklar två typer av komponenter: fysisk och kontroll. Fysiska komponenter är grundläggande mekaniska/elektriska element som inkluderar tre typer av modeller: fysisk dimension, statiska egenskaper och dynamiska beteendemodeller. Kontrollkomponenter inkluderar kontrollmetoder och dynamiska prestandabegränsningar. Konceptet med ett mekatroniskt system under konstruktion i den stödjande mjukvaruverktygslådan konfigureras med hjälp av komponentbiblioteket. En multikriterieoptimeringsmetod används på en systemnivå som ger en optimal lösning för systemet när det gäller storlek, implementeringskostnad, hårdvarukostnad och kontrollprestanda. Med denna systemnivåoptimering behöver du inte dela upp problemet eller integrera flera optimeringsslingor i metoden. Fyra designfall används för att möjliggöra vissa funktioner i mjukvaruverktygslådan och undersöka metodens förmåga att hantera multi-DOF olinjära system; och att lyfta fram sambandet mellan tekniska domäner och bredda täckningen av discipliner. Metodens genomförbarhet utvärderas genom variationer av konstruktionstester för designfallen. Följaktligen studeras, utvecklas och integreras mekaniska komponenter och kontrollkomponenter i verktygslådan IDIOM (Integrated Design Optimization of Mechatronic Systems). Eftersom modellen för varje komponent behandlas separat i konstruktions- och modelleringssteget kan alla systemkonfigurationer som använder de tillgängliga komponenterna hanteras med metoden. Avhandlingens bidrag kan sammanfattas enligt följande: Tvärvetenskaplig designmetod och undersökning av kopplingar och korrelationer mellan tekniska domänerModeller och samdesignmetoder för att inkludera olinjära mekatroniska system med flera grader av frihetUtökad metod för att täcka viktiga aspekter i diskreta tidssystem och nyckelfaktorer vid implementering av inbäddad kontroll Målet med denna avhandling är att förbättra systemutvecklingseffektiviteten genom att integrera tekniska domäner i en tidig designfas. Följaktligen är metoden i denna avhandling ett grundläggande drag i utvärderingen av mekatroniska systemdesign som hjälper till med bättre systemutveckling och analys. Det finns dock ingen enda "bästa" metod för design av mekatroniska system; den presenterade metoden i denna avhandling underlättar en effektiv samtidig integrerad designoptimering och har en bredare täckning av tekniska domäner. De resultat som uppnås med metoden säkerställer en optimal systemlösning när det gäller de olika involverade tekniska domänerna. |