Fiber-based laser speckle imaging for the detection of pulsatile flow
Autor: | Regan, Caitlin, Yang, Bruce Y, Mayzel, Kent C, Ramirez-San-Juan, Julio C, Wilder-Smith, Petra, Choi, Bernard |
---|---|
Rok vydání: | 2015 |
Předmět: |
Clinical Sciences
Bioengineering In Vitro Techniques root canal Cardiovascular dental photoplethysmography electric pulp test pulsatile blood flow Clinical Research pulpal vitality Medicine and Health Sciences Humans leached fiber bundle Dental/Oral and Craniofacial Disease Photoplethysmography Dental Pulp Optical Fibers Lasers Dermatology & Venereal Diseases Optical Imaging Equipment Design Healthy Volunteers cold test endodontics Gas Pulsatile Flow |
Zdroj: | Lasers in surgery and medicine, vol 47, iss 6 Regan, Caitlin; Yang, Bruce Y; Mayzel, Kent C; Ramirez-San-Juan, Julio C; Wilder-Smith, Petra; & Choi, Bernard. (2015). Fiber-based laser speckle imaging for the detection of pulsatile flow. Lasers in Surgery and Medicine, 47(6), 520-525. doi: 10.1002/lsm.22370. UC Irvine: Institute for Clinical and Translational Science. Retrieved from: http://www.escholarship.org/uc/item/55x5p8fc Regan, C; Yang, BY; Mayzel, KC; Ramirez-San-Juan, JC; Wilder-Smith, P; & Choi, B. (2015). Fiber-based laser speckle imaging for the detection of pulsatile flow. Lasers in Surgery and Medicine, 47(6), 520-525. doi: 10.1002/lsm.22370. UC Irvine: Retrieved from: http://www.escholarship.org/uc/item/9wx2g8x9 |
DOI: | 10.1002/lsm.22370. |
Popis: | © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc. Background and Objective In endodontics, a major diagnostic challenge is the accurate assessment of pulp status. In this study, we designed and characterized a fiber-based laser speckle imaging system to study pulsatile blood flow in the tooth. Study Design/Materials and Methods To take transilluminated laser speckle images of the teeth, we built a custom fiber-based probe. To assess our ability to detect changes in pulsatile flow, we performed in vitro and preliminary in vivo tests on tissue-simulating phantoms and human teeth. We imaged flow of intralipid in a glass microchannel at simulated heart rates ranging from 40beats/minute (bpm) to 120bpm (0.67-2.00Hz). We also collected in vivo data from the upper front incisors of healthy subjects. From the measured raw speckle data, we calculated temporal speckle contrast versus time. With frequency-domain analysis, we identified the frequency components of the contrast waveforms. Results With our approach, we observed in vitro the presence of pulsatile flow at different simulated heart rates. We characterized simulated heart rate with an accuracy of and >98%. In the in vivo proof-of-principle experiment, we measured heart rates of 69, 90, and 57bpm, which agreed with measurements of subject heart rate taken with a wearable, commercial pulse oximeter. Conclusions We designed, built, and tested the performance of a dental imaging probe. Data from in vitro and in vivo tests strongly suggest that this probe can detect the presence of pulsatile flow. LSI may enable endodontists to noninvasively assess pulpal vitality via direct measurement of blood flow. Lasers Surg. Med. 47:520-525, 2015. |
Databáze: | OpenAIRE |
Externí odkaz: |