Linguistic information extraction for job ads (SIRE project)

Autor: Loth, Romain, Battistelli, Delphine, Chaumartin, François-Régis, de Mazancourt, Hugues, Minel, Jean-Luc, Vinckx, Axelle
Přispěvatelé: Modèles, Dynamiques, Corpus (MoDyCo), Université Paris Nanterre (UPN)-Centre National de la Recherche Scientifique (CNRS), Sens, Texte, Informatique, Histoire (STIH), Université Paris-Sorbonne (UP4), Proxem, Lingway Labs, Lingway, Fonds Européen FEDER, Centre de Hautes Etudes Internationales d'Informatique Documentaire, Minel, Jean-Luc
Jazyk: angličtina
Rok vydání: 2010
Předmět:
Zdroj: RIAO 2010
9th international conference on Adaptivity, Personalization and Fusion of Heterogeneous Information
9th international conference on Adaptivity, Personalization and Fusion of Heterogeneous Information, Apr 2010, Paris, France. pp.300-303
Popis: International audience; As a text, each job advertisement expresses rich information about the occupation at hand, such as competence needs (i.e. required degrees, field knowledge, task expertise or technical skills). To facilitate the access to this information, the SIRE project conducted a corpus based study of how to articulate HR expert ontologies with modern semi-supervised information extraction techniques. An adaptive semantic labeling framework is developed through a parallel work on retrieval rules and on latent semantic lexicons of terms and jargon phrases. In its operational stage, our prototype will collect online job ads and index their content into detailed RDF triples compatible with applications ranging from enhanced job search to automated labor-market analysis.
Databáze: OpenAIRE