Support vector machine model for regression applied to the estimation of the creep rupture stress in ferritic steels

Autor: Donis Diaz, Carlos Alberto, Eduardo Valencia Morales, Morell Perez, Carlos
Předmět:
Zdroj: Web of Science
Revista Facultad de Ingeniería Universidad de Antioquia, Issue: 47, Pages: 53-58, Published: MAR 2009
Popis: Teniendo como antecedente el empleo de Redes Neuronales en el pronóstico de la tensión de ruptura por termofluencia (creep) en aceros ferríticos, en el presente trabajo se realizan nuevos experimentos, utilizando un método de reciente desarrollo dentro del campo del aprendizaje automatizado: las Máquinas de Vectores de Soporte para Regresión (SVMR). Se realizó un análisis comparativo entre ambos métodos obteniéndose resultados satisfactorios por parte de este último. Los resultados son fundamentados teóricamente proponiéndose al final, el empleo de un modelo de SVMR que utiliza un kernel polinomial de grado 3 y constante de regularización igual a 100 para estimar la tensión de ruptura por creep. Having as antecedent the use of artificial neural networks (ANN) in the estimation of the creep rupture stress in ferritic steels, new experiments have been developed using Support Vector Machine for Regression (SVMR), a recently method developed into the machine learning field. A comparative analysis between both methods established that SVMR have a better behavior in the problematic of creep. The results are explained theoretically and finally, the use of a model of SVMR that uses a polynomial kernel of third grade and a control capacity constant of 100, is proposed.
Databáze: OpenAIRE