Méthodes d'apprentissage profond pour l'analyse efficace d'images en limitant l'annotation humaine
Autor: | Gidaris, Spyridon |
---|---|
Přispěvatelé: | Laboratoire d'Informatique Gaspard-Monge (LIGM), Centre National de la Recherche Scientifique (CNRS)-Fédération de Recherche Bézout-ESIEE Paris-École des Ponts ParisTech (ENPC)-Université Paris-Est Marne-la-Vallée (UPEM), Université Paris-Est, Nikos Komodakis, STAR, ABES |
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: | |
Zdroj: | Other. Université Paris-Est, 2018. English. ⟨NNT : 2018PESC1143⟩ |
Popis: | Recent development in deep learning have achieved impressive results on image understanding tasks. However, designing deep learning architectures that will effectively solve the image understanding tasks of interest is far from trivial. Even more, the success of deep learning approaches heavily relies on the availability of large-size manually labeled (by humans) data. In this context, the objective of this dissertation is to explore deep learning based approaches for core image understanding tasks that would allow to increase the effectiveness with which they are performed as well as to make their learning process more annotation efficient, i.e., less dependent on the availability of large amounts of manually labeled training data. We first focus on improving the state-of-the-art on object detection. More specifically, we attempt to boost the ability of object detection systems to recognize (even difficult) object instances by proposing a multi-region and semantic segmentation-aware ConvNet-based representation that is able to capture a diverse set of discriminative appearance factors. Also, we aim to improve the localization accuracy of object detection systems by proposing iterative detection schemes and a novel localization model for estimating the bounding box of the objects. We demonstrate that the proposed technical novelties lead to significant improvements in the object detection performance of PASCAL and MS COCO benchmarks. Regarding the pixel-wise image labeling problem, we explored a family of deep neural network architectures that perform structured prediction by learning to (iteratively) improve some initial estimates of the output labels. The goal is to identify which is the optimal architecture for implementing such deep structured prediction models. In this context, we propose to decompose the label improvement task into three steps: 1) detecting the initial label estimates that are incorrect, 2) replacing the incorrect labels with new ones, and finally 3) refining the renewed labels by predicting residual corrections w.r.t. them. We evaluate the explored architectures on the disparity estimation task and we demonstrate that the proposed architecture achieves state-of-the-art results on the KITTI 2015 benchmark.In order to accomplish our goal for annotation efficient learning, we proposed a self-supervised learning approach that learns ConvNet-based image representations by training the ConvNet to recognize the 2d rotation that is applied to the image that it gets as input. We empirically demonstrate that this apparently simple task actually provides a very powerful supervisory signal for semantic feature learning. Specifically, the image features learned from this task exhibit very good results when transferred on the visual tasks of object detection and semantic segmentation, surpassing prior unsupervised learning approaches and thus narrowing the gap with the supervised case.Finally, also in the direction of annotation efficient learning, we proposed a novel few-shot object recognition system that after training is capable to dynamically learn novel categories from only a few data (e.g., only one or five training examples) while it does not forget the categories on which it was trained on. In order to implement the proposed recognition system we introduced two technical novelties, an attention based few-shot classification weight generator, and implementing the classifier of the ConvNet based recognition model as a cosine similarity function between feature representations and classification vectors. We demonstrate that the proposed approach achieved state-of-the-art results on relevant few-shot benchmarks Le développement récent de l'apprentissage profond a permis une importante amélioration des résultats dans le domaine de l'analyse d'image. Cependant, la conception d'architectures d'apprentissage profond à même de résoudre efficacement les tâches d'analyse d'image est loin d'être simple. De plus, le succès des approches d'apprentissage profond dépend fortement de la disponibilité de données en grande quantité étiquetées manuellement (par des humains), ce qui est à la fois coûteux et peu pratique lors du passage à grande échelle. Dans ce contexte, l'objectif de cette thèse est d'explorer des approches basées sur l'apprentissage profond pour certaines tâches de compréhension de l'image qui permettraient d'augmenter l'efficacité avec laquelle celles-ci sont effectuées ainsi que de rendre le processus d'apprentissage moins dépendant à la disponibilité d'une grande quantité de données annotées à la main. Nous nous sommes d'abord concentrés sur l'amélioration de l'état de l'art en matière de détection d'objets. Plus spécifiquement, nous avons tenté d'améliorer la capacité des systèmes de détection d'objets à reconnaître des instances d'objets (même difficiles à distinguer) en proposant une représentation basée sur des réseaux de neurone convolutionnels prenant en compte le aspects multi-région et de segmentation sémantique, et capable de capturer un ensemble diversifié de facteurs d'apparence discriminants. De plus, nous avons visé à améliorer la précision de localisation des systèmes de détection d'objets en proposant des schémas itératifs de détection d'objets et un nouveau modèle de localisation pour estimer la boîte de délimitation d'un objet. En ce qui concerne le problème de l'étiquetage des images à l'échelle du pixel, nous avons exploré une famille d'architectures de réseaux de neurones profonds qui effectuent une prédiction structurée des étiquettes de sortie en apprenant à améliorer (itérativement) une estimation initiale de celles-ci. L'objectif est d'identifier l'architecture optimale pour la mise en œuvre de tels modèles profonds de prévision structurée. Dans ce contexte, nous avons proposé de décomposer la tâche d'amélioration de l'étiquetage en trois étapes : 1) détecter les estimations initialement incorrectes des étiquettes, 2) remplacer les étiquettes incorrectes par de nouvelles étiquettes, et finalement 3) affiner les étiquettes renouvelées en prédisant les corrections résiduelles. Afin de réduire la dépendance à l'effort d'annotation humaine, nous avons proposé une approche d'apprentissage auto-supervisée qui apprend les représentations sémantiques d'images à l'aide d'un réseau de neurones convolutionnel en entraînant ce dernier à reconnaître la rotation 2d qui est appliquée à l'image qu'il reçoit en entrée. Plus précisément, les caractéristiques de l'image tirées de cette tâche de prédiction de rotation donnent de très bons résultats lorsqu'elles sont transférées sur les autres tâches de détection d'objets et de segmentation sémantique, surpassant les approches d'apprentissage antérieures non supervisées et réduisant ainsi l'écart avec le cas supervisé. Enfin, nous avons proposé un nouveau système de reconnaissance d'objets qui, après son entraînement, est capable d'apprendre dynamiquement de nouvelles catégories à partir de quelques exemples seulement (typiquement, seulement un ou cinq), sans oublier les catégories sur lesquelles il a été formé. Afin de mettre en œuvre le système de reconnaissance proposé, nous avons introduit deux nouveautés techniques, un générateur de poids de classification basé sur l'attention et un modèle de reconnaissance basé sur un réseau neuronal convolutionnel dont le classificateur est implémenté comme une fonction de similarité cosinusienne entre les représentations de caractéristiques et les vecteurs de classification |
Databáze: | OpenAIRE |
Externí odkaz: |