Pursuing optimal prediction of discharge time in ICUS with machine learning methods

Autor: Cuadrado D, Riaño D, Gómez J, Bodí M, Sirgo G, Esteban F, García R, Rodríguez A
Přispěvatelé: Universitat Rovira i Virgili
Rok vydání: 2019
Předmět:
Medicina ii
Biotecnología
Planejamento urbano e regional / demografia
Matemática / probabilidade e estatística
Ciências agrárias i
Comunicació i informació
General o multidisciplinar
Educação física
Medicina iii
Engenharias i
Medicina veterinaria
Geociências
Computer science
artificial intelligence

Ciências sociais aplicadas i
Intensive care units
Geografía
Computer science
theory & methods

Engenharias ii
Computer science (all)
Biodiversidade
Astronomia / física
Química
Engenharias iv
Farmacia
Arquitetura e urbanismo
Arquitetura
urbanismo e design

Saúde coletiva
Comunicação e informação
Educação
Linguística e literatura
Artificial neural-networks
Materiais
Data-driven models
Ciências biológicas i
Ciência da computação
Direito
General computer science
Discharge time prediction
Odontología
Medicina i
Administração pública e de empresas
ciências contábeis e turismo

Theoretical computer science
Ciências biológicas iii
Ciências ambientais
Engenharias iii
Computer Science (Miscellaneous)
Computer Science
Artificial Intelligence
Computer Science
Theory & Methods
Theoretical Computer Science

Computer science (miscellaneous)
Interdisciplinar
Psicología
Ensino
Ciências biológicas ii
Administração
ciências contábeis e turismo

Intelligent data analysis
Length-of-stay
Model
Artes
Zdroj: Lecture Notes In Computer Science
Lecture Notes In Computer Science. 11526 LNAI 150-154
Repositori Institucional de la Universitat Rovira i Virgili
Consejo Superior de Investigaciones Científicas (CSIC)
Lecture Notes In Computer Science. 11526 LNAI150-154
Universitat Rovira i virgili (URV)
DOI: 10.1007/978-3-030-21642-9_20
Popis: © Springer Nature Switzerland AG 2019. In hospital intensive care units (ICU), patients are under continuous evaluation. One of the purposes of this evaluation is to determine the expected number of days to discharge. This value is important to manage ICUs. Some studies show that health care professionals are good at predicting short-term discharge times, but not as good at long-term predictions. Machine learning methods can achieve 1.79-day average prediction error. We performed a study on 3,787 patient-days in the ICU of the Hospital Joan XXIII (Spain) to obtain a data-driven model to predict the discharge time of ICU patients, in a daily basis. Our model, which is based on random forest technology, obtained an error of 1.34 days. We studied the progression of the model as more data are available and predicted that the number of instances required to reduce the error below one day is 4,745. When we trained the model with all the available data, we obtained a mean error of less than half a day with a coefficient of determination (R2) above 97% in their predictions on either ICU survivors and not survivors. Similar results were obtained differentiating by patients’ gender and age, confirming our approach as a good means to achieve optimal performance when more data will be available.
Databáze: OpenAIRE