Genetic improvement of a yeast Saccharomyces cerevisiae isolated in Colombia for xylose fermentation
Autor: | Patiño Lagos, Margareth Andrea |
---|---|
Přispěvatelé: | Velásquez Lozano, Mario Enrique, Ugarte Stambuk, Boris Juan Carlos, Grupo de Investigación en Procesos Químicos y Bioquímicos |
Rok vydání: | 2021 |
Předmět: |
620 - Ingeniería y operaciones afines
Evolutionary engineering Recombinant ingeniería evolutiva Silenciamiento génico xylose 660 - Ingeniería química Gene silencing 600 - Tecnología (Ciencias aplicadas) Recombinantes Saccharomyces cerevisiae xylitol production Genética Producción de xilitol 540 - Química y ciencias afines Biotecnología vegetal 570 - Biología 500 - Ciencias naturales y matemáticas Genetics Xilosa Plant biotechnology |
Zdroj: | Repositorio UN Universidad Nacional de Colombia instacron:Universidad Nacional de Colombia |
Popis: | fotografías a color, ilustraciones, gráficas, tablas Saccharomyces cerevisiae es la principal levadura utilizada en biotecnología en todo el mundo, gracias a que su metabolismo y fisiología son conocidos permitiendo su aprovechamiento en diversos procesos industriales. Este microorganismo es excelente en la fermentación de azúcares como las hexosas, sin embargo, ha sido considerado como incapaz de metabolizar pentosas como la arabinosa y la xilosa presentes en la biomasa lignocelulósica. Esta biomasa es una materia prima ampliamente disponible que contiene xilosa, el segundo azúcar más abundante de la naturaleza, en aproximadamente el 35% de los azúcares totales. Esta fracción de azúcar podría ser aprovechada para la obtención de productos químicos de alto valor agregado como el xilitol. Utilizando ingeniería genética algunos investigadores han obtenido cepas recombinantes de S. cerevisiae con capacidad reducida de fermentar xilosa. El Grupo de Investigación en Procesos Químicos y Bioquímicos de la Universidad Nacional de Colombia realizó el aislamiento de algunos microorganismos obtenidos en Colombia, donde se identificó una cepa de S. cerevisiae, denominada como 202-3, que en presencia de hidrolizados lignocelulósicos mostró un consumo de xilosa del 2 % al 5%, característica que no se encuentra asociada a la especie. En esta investigación se confirmó mediante tres enfoques distintos que la cepa 202-3 efectivamente corresponde a una S. cerevisiae: mediante observación morfológica de la cepa por microscopía óptica y de barrido, por amplificación de un fragmento de 150 pb con iniciadores específicos para la especie, y por secuenciación de la región ITS. Su secuencia consenso mostró una similitud superior al 99 % respecto a las secuencias de S. cerevisiae reportadas en la base de datos genómica Blastn del NCBI. Experimentalmente, la cepa 202-3 no mostró un mejor consumo de xilosa que otras especies de levaduras analizadas consumidoras de esa pentosa, pero sí una metabolización significativa con un consumo del 9,8 %, lo cual hasta ahora no había sido reportado para ninguna cepa de S. cerevisiae. Sin embargo, para mejorar esa capacidad e intentar producir etanol a partir de la xilosa, la cepa 202-3 fue sometida a ingeniería genética y evolutiva. Determinada la ploidía de la cepa, se procedió a silenciar el gen GAL80 implicado en la represión de los genes GAL para que sean expresados continuamente y mejorar la captación y asimilación de esa pentosa. Para las recombinantes obtenidas los consumos de xilosa fueron de hasta el 18% con rendimiento de xilitol de hasta 0,407 g/g y no se obtuvo valores significativos de etanol. Mediante ingeniería evolutiva a la cepa parental y a dos recombinantes se obtuvo cepas mejoradas después de ocho inóculos sucesivos de 144 horas cada uno. De la cepa parental 202-3 que consumió 7% de xilosa, se obtuvo otra cepa que consumió 14% de xilosa y la producción de xilitol aumentó en 345% desde 0,236 g en el inóculo inicial a 1,050 g en el final. Con la cepa obtenida de la recombinante R2-MAPL (202-3, GAL80/gal80Δ::KanMX) el consumo de xilosa fue de 20% y la producción de xilitol aumentó 196% de 0,996 g inicial a 2,951 g final. Con la cepa obtenida de la recombinante B2G-MAPL (202-3, gal80Δ::KanMX/gal80Δ::Bler) el consumo final de xilosa fue de 28% y la producción de xilitol pasó de 1,115 g inicial a 4,876 g final representando un incremento de 337%. Estos resultados muestran que las estrategias utilizadas mejoraron el fenotipo de la cepa nativa 202-3 frente al consumo de xilosa y la producción de xilitol. (Texto tomado de la fuente) Saccharomyces cerevisiae is the most used yeast in biotechnology throughout the world because its metabolism, and physiology are well known, and it has been widely used in various industrial processes. This microorganism is excellent in the fermentation of sugars such as hexoses. However, it does not metabolize pentoses such as arabinose and xylose which are present in lignocellulosic biomass. This biomass constitutes a widely available raw material, with xylose content, the second most abundant sugar in nature, corresponding to approximately 35% of total sugars. This sugar fraction could be used to obtain high added value chemical products such as xylitol. Through genetic engineering some researchers have obtained recombinant yeast strains of S. cerevisiae with reduced xylose fermentation capability. The research group in Chemical and Biochemical Processes of the Universidad Nacional de Colombia performed the isolation of some microorganisms obtained in Colombia, where a S. cerevisiae strain called 202-3 was identified. This strain showed a xylose consumption between 2% and 5% in presence of lignocellulosic hydrolysates, characteristic that is not associated with the lineage. In this research, it was confirmed through three different approaches that the 202-3 strain is indeed a S. cerevisiae: morphologic strain observation by optical and SEM microscopy, amplification of a 150 bp fragment with species-specific primers, and sequencing its ITS region, whose consensus sequence showed similarity greater than 99% with the S. cerevisiae sequences reported in the NCBI Blastn genomic database. Experimentally, strain 202-3 did not show to be better than other yeast species with the capability to consume xylose, but it did show a significant metabolization of that pentose with a consumption of 9,8%, which until now had not been reported for S. cerevisiae. However, to improve that ability and try to produce ethanol from xylose, the strain was subjected to genetic and evolutionary engineering. Once the ploidy of the strain was determined, the GAL80 gene involved in the repression of the GAL genes was deleted so that they are continuously expressed and improve the uptake and assimilation of the pentose. For the recombinant strains obtained, the xylose consumptions were up to 18% with a xylitol yield of up to 0,407 g/g and no significant ethanol values were obtained. By evolutionary engineering to the parental strain and to two recombinants, improved stains were obtained after eight successive inoculum of 144 hours each. From the parental strain 202-3 that consumed 7% of xylose, another strain was obtained that consumed 14% of xylose and the xylitol production increased 345%, from 0,236 g in the initial inoculum to 1,050 g in the final one. With the strain obtained from recombinant R2-MAPL (202-3, GAL80/gal80Δ::KanMX), the xylose consumption was 20% and xylitol production increase 196%, from 0,996 g initial to 2,951 g final. With the strain obtained from recombinant B2G-MAPL (202-3, gal80Δ::KanMX/gal80Δ::Bler) the final xylose consumption was 28% and xylitol production went from 1,115 g initial to 4,876 g final, representing a 337% increase. These results show that the strategies used improved the phenotype of the native strain 202-3 against the consumption of xylose and the production of xylitol. Doctorado Doctor en Biotecnología Bioprocesos y Bioprospección |
Databáze: | OpenAIRE |
Externí odkaz: |