Driver inattention: Relationships between attentional networks and propensity to commit errors while driving
Autor: | Robalino Guerra, Paulina Elizabeth, Musso, Mariel Fernanda |
---|---|
Jazyk: | Spanish; Castilian |
Rok vydání: | 2018 |
Předmět: | |
Zdroj: | CONICET Digital (CONICET) Consejo Nacional de Investigaciones Científicas y Técnicas instacron:CONICET |
Popis: | Los accidentes de tránsito son un fenómeno complejo, resultado de factores ambientales, vehiculares y humanos, y una de las principales causas de muerte a nivel mundial. La inatención es un factor primordial que contribuye a los accidentes de tránsito. El objetivo del presente trabajo fue analizar la relación entre la atención según el modelo de redes atencionales de Posner(1994) y la propensión a cometer errores relacionados con la inatención durante la conducción vehicular. La muestra estuvo compuesta por 70 participantes, edades entre 19 y 59 años, ambos géneros, 9.83 años de experticia como promedio. Se utilizó el Cuestionario de Experiencias durante la conducción (ARDES-ERIC), Test de Redes Atencionales (ANT) y un cuestionario sociodemográfico. Los resultados indican que existe una correlación significativa entre el tiempo de reacción (TR) total y la propensión a cometer errores durante la conducción. La interacción entre la experticia y el TR total sobre la propensión a cometer errores fue significativa. La atención ejecutiva tuvo un efecto significativo sobre la propensión a cometer errores y la dimensión de control. El modelo que incluye la red de orientación y tiempos de reacción explicó el 20% de la propensión a cometer errores en la conducción. Una alta orientación estáasociada con una baja propensión a cometer errores, y los tiempos de reacción más lentos están relacionados con altos errores de conducción. Los resultados son consistentes con estudios previos y aportan nueva evidencia sobre elrol de los tiempos de reacción y redes atencionales en interacción con variables sociodemográficas y experticia sobre la propensión a cometer errores en la conducción. Traffic accidents are a complex phenomenon resulting from a combination of environmental, vehicular and human factors, which have become one of the leading causes of death worldwide. Inattention is one of the main factors contributing to traffic accidents. The aim was to analyze the relationships between attention and the error proneness while driving. Posner´s model states three attentional networks quantified by reaction time measures: orienting, alerting, and executive control (Posner, 1994; Fan et al., 2002). Orienting is responsible for the information selection. Alerting facilitates achieving and sustaining an alert state. Executive attention controls interference and solves conflicts between possible responses. Driver inattention was conceptualized from a perspective of individual differences as a “tendency or personal propensity of drivers to experience attentional lapses” (Ledesma et al., 2010, 2015). This tendency can be expressed at different levels of driving behavior: operational level, maneuvering, and strategic level (Michon, 1985). The sample consisted of 70 drivers from Buenos Aires (Argentina), both genders (57% female; Mage= 29.29; sd= 9.258; M experience years = 9.83; sd= 8.861), inclusion criteria: driver’s license, regular driving during the last two months (at least once a week), normal vision, and at least one year of driving experience. Factorial design 2 (low- high for each of the attentional networks) x 2 (gender). Measures: ARDES-ERIC (Ledesma et al., 2010): a 19-items self-report instrument to evaluate individual differences in the propensity to commit attentional failures while driving and can be classified according to the driving task level at which they occur (navigation, maneuvering, or control) (Alpha: .88; navigation Alpha: .744, maneuvering Alpha: .727, and control Alpha: .770), Attention Network Test (Fan et al., 2002) to measure three attentional networks: alerting (Alpha: .52), orienting (Alpha: .61), and executive attention (Alpha: .77) and RT attention (Alpha: .87) and a sociodemographic questionnaire that includes question about driver behavior (e.g. frequency and experience). Results show that no relationship was detected between ARDES and age but there are significant correlation between ARDES and driving task level with Global Reaction Time (Global RT). ANOVA results show a significant interaction between Global Reaction Times and expertise on driving errors [F(1,64)= 7.746; p < .01; η²= .108]. Experts drivers with low RT (lower processing speed) have a higher propensity to commit attentional failures while driving (Mlow rt= 35.58; sd= 13.08; Mhigh rt= 26.95; sd= 5.21). There are no interactions between Global RT, sociodemographics variables (age, gender), and driving frequency on propensity to commit errors. Global rt correlates significantly with total score driving errors (r= .373, p < .01). Executive Attention has a significant effect on total driving errors [F(1,66)= 3.760; p= .05; η²=.054], and only on the Control Dimension [F(1,66)= 7.889; p < .01; η²=.124]. There are no effects of Alerting and Orienting on total driving errors neither on each dimension of driving. A linear regression model involving the Orientation network and Global rt explained the 20% of the total variance of the error proneness while driving (R2 adjusted= .203). A higher level of Orienting attention is related to a lower propensity to commit errors (ß= -.332; p < .01), and a lower processing speed (higher Global RT) explained higher driving errors (ß = .242; p < .05). Results are consistent with previous studies (López-Ramón et al., 2011) and provide new evidence about the role of executive control on specific dimensions of driving. In addition, the findings provide new evidence on the role of reaction times and attentional networks, in interaction with sociodemographic variables and expertise on the propensity to commit errors while driving. Limitations and theoretical-practical implications will be discussed. Fil: Robalino Guerra, Paulina Elizabeth. Universidad Argentina de la Empresa; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina Fil: Musso, Mariel Fernanda. Universidad Argentina de la Empresa; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Saavedra 15. Centro Interdisciplinario de Investigaciones en Psicología Matemática y Experimental Dr. Horacio J. A. Rimoldi; Argentina |
Databáze: | OpenAIRE |
Externí odkaz: |