A newform theory for Katz modular forms
Autor: | Mamo, Daniel Berhanu |
---|---|
Přispěvatelé: | Wiese, Gabor [superviser] |
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
fluids and secretions
Mathematics::Algebraic Geometry Mathematics::Number Theory parasitic diseases Mathematics::Classical Analysis and ODEs Mathematics [G03] [Physical chemical mathematical & earth Sciences] Mathématiques [G03] [Physique chimie mathématiques & sciences de la terre] Computer Science::Computational Geometry human activities |
Popis: | In this thesis, a strong multiplicity one theorem for Katz modular forms is studied. We show that a cuspidal Katz eigenform which admits an irreducible Galois representation is in the level and weight old space of a uniquely associated Katz newform. We also set up multiplicity one results for Katz eigenforms which have reducible Galois representation. |
Databáze: | OpenAIRE |
Externí odkaz: |