Representations of simple noncommutative Jordan superalgebras I

Autor: Popov, Yuri, 1993
Přispěvatelé: UNIVERSIDADE ESTADUAL DE CAMPINAS
Rok vydání: 2020
Předmět:
Zdroj: Repositório da Produção Científica e Intelectual da Unicamp
Universidade Estadual de Campinas (UNICAMP)
instacron:UNICAMP
Repositório Institucional da Unicamp
Popis: Agradecimentos: The author is grateful to Prof. Alexandre Pozhidaev (Sobolev Institute of Math., Russia) and Prof. Ivan Kaygorodov (UFABC, Brazil) for interest and constructive comments Abstract: In this article we begin the study of representations of simple finite-dimensional noncommutative Jordan superalgebras. In the case of degree =3 we show that any finite-dimensional representation is completely reducible and, depending on the superalgebra, quasiassociative or Jordan. Then we study representations of superalgebras and and prove the Kronecker factorization theorem for superalgebras . In the last section we use a new approach to study noncommutative Jordan representations of simple Jordan superalgebras Fechado
Databáze: OpenAIRE