Representations of simple noncommutative Jordan superalgebras I
Autor: | Popov, Yuri, 1993 |
---|---|
Přispěvatelé: | UNIVERSIDADE ESTADUAL DE CAMPINAS |
Rok vydání: | 2020 |
Předmět: | |
Zdroj: | Repositório da Produção Científica e Intelectual da Unicamp Universidade Estadual de Campinas (UNICAMP) instacron:UNICAMP Repositório Institucional da Unicamp |
Popis: | Agradecimentos: The author is grateful to Prof. Alexandre Pozhidaev (Sobolev Institute of Math., Russia) and Prof. Ivan Kaygorodov (UFABC, Brazil) for interest and constructive comments Abstract: In this article we begin the study of representations of simple finite-dimensional noncommutative Jordan superalgebras. In the case of degree =3 we show that any finite-dimensional representation is completely reducible and, depending on the superalgebra, quasiassociative or Jordan. Then we study representations of superalgebras and and prove the Kronecker factorization theorem for superalgebras . In the last section we use a new approach to study noncommutative Jordan representations of simple Jordan superalgebras Fechado |
Databáze: | OpenAIRE |
Externí odkaz: |