Computational modeling of photoactive materials and heterointerfaces for solar energy conversion
Autor: | Segalina, Alekos |
---|---|
Přispěvatelé: | Laboratoire de Physique et Chimie Théoriques (LPCT), Institut de Chimie du CNRS (INC)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Université de Lorraine, Mariachiara Pastore, UL, Thèses |
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
[CHIM.MATE] Chemical Sciences/Material chemistry
Structure électronique Excited states Dye-Sensitized Photoelectrosynthetic Cell Cellule solaire à pigment photosensible [CHIM.MATE]Chemical Sciences/Material chemistry [INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation [CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistry [CHIM.THEO] Chemical Sciences/Theoretical and/or physical chemistry Electronic Structure [CHIM] Chemical Sciences [CHIM]Chemical Sciences [INFO.INFO-MO] Computer Science [cs]/Modeling and Simulation États excités |
Zdroj: | Chemical Sciences. Université de Lorraine, 2020. English. ⟨NNT : 2020LORR0284⟩ |
Popis: | In this thesis we have dealt with the computational modelling of materials and molecular systems that are used in dye-sensitized solar cells (DSSCs) and dye-sensitized photoelectrosynthetic cells (DSPECs). In particular, we have addressed the study of the elements composing these devices, i.e. dyes, semiconductors and interfaces, by means of computational chemistry techniques, paying special attention to the modelling of the dynamical, optical and electronic structure properties.The complexity of the systems and the physical processes involved requires the combined use of different theoretical methodologies, as detailed below. A perylene diimide (PDI) dye in solution has been investigated by combining Density Functional Theory based methods and classical molecular dynamics (MD) simulations. In particular, we focused on the excited state properties of its aggregates and on the simulation of its electronic absorption spectrum by taking into account vibronic effects. In this context, to have a reliable description of the potential energy surface we made use of a specifically parameterized Quantum-Mechanically Derived Force Field (QMD-FF). Regarding the semiconductors, we have studied different phases of WO₃, that is an n-type semiconductor, using methods based on the Green’s Functions in order to rationalize the role of the crystal lattice distortion on the band structure and on the electronic and optical properties. Lastly, we have studied a simplified, albeit realistic model, of a dye-sensitized NiO interface (C343@NiO(100)) by combining ab initio molecular dynamic (AIMD) and GW calculations to describe the role of thermal effects and of the environmental solvent molecules on the interfacial energy-level alignment. Dans cette thèse, nous avons traité de la modélisation computationnelle des matériaux et des systèmes moléculaires utilisés dans les cellules solaires à colorant (DSSC) et les cellules photoélectrosynthétiques à colorant (DSPEC). En particulier, nous avons abordé l’étude des éléments composant ces dispositifs, à savoir les colorants, les semi-conducteurs et les interfaces au moyen de techniques de chimie computationnelle en accordant une attention particulière à la modélisation des propriétés de la structure dynamique, optique et électronique. La complexité des systèmes et des processus physiques impliqués nécessite la combinaison de différentes méthodologies théoriques, comme détaillé ci-dessous. Un diimide de pérylène (PDI) en solution a été étudié en combinant des méthodes basées sur la théorie de la fonctionnelle de la densité et des simulations de dynamique moléculaire (MD) classiques. En particulier, nous nous sommes concentrés sur les propriétés d’état excité de ses agrégats et sur la simulation de son spectre d’absorption électronique en prenant en compte les effets vibroniques. Dans ce contexte, pour avoir une description fiable de la surface d’énergie potentielle, nous avons utilisé un champ de force dérivé quantique-mécanique (QMD-FF) spécifiquement paramétré. Concernant les semi-conducteurs, nous avons étudié différentes phases de WO₃, c’est-à-dire un semi-conducteur de type n, en utilisant des méthodes basées sur les fonctions de Green afin de rationaliser le rôle de la distorsion du réseau cristallin sur la structure de bande et sur les propriétés électroniques et optiques. Enfin, nous avons étudié un modèle simplifié, quoique réaliste, d’une interface NiO sensibilisée aux colorants (C343@NiO(100)) en combinant des calculs de dynamique moléculaire ab initio (AIMD) et de GW pour décrire le rôle des effets thermiques et des molécules du solvant environnemental sur l’alignement interfacial du niveau d’énergie. |
Databáze: | OpenAIRE |
Externí odkaz: |