Sentiment Analysis of Music Genres
Autor: | Čagalj, Luka |
---|---|
Přispěvatelé: | Delač, Goran |
Jazyk: | chorvatština |
Rok vydání: | 2020 |
Předmět: |
logistic regression
TEHNIČKE ZNANOSTI. Računarstvo BM25 TF-IDF stroj potpornih vektora aktivno učenje analiza sentimenta logistička regresija TECHNICAL SCIENCES. Computing sentiment analysis active learning GloVe LSTM povratna neuronska mreža support vector machine LSTM recurrent neural network analiza sentimenta TF-IDF BM25 GloVe logistička regresija stroj potpornih vektora LSTM povratna neuronska mreža aktivno učenje |
Popis: | Analiza sentimenta ostvarena je na više načina. Različite reprezentacije teksta poput TF-IDF reprezentacije, reprezentacije dobivene primjenom rangirajuće funkcije BM25 i GloVe modela za učenje vektorskih reprezentacija riječi, koristile su se za učenje modela. U izradi sustava koristili su se modeli: logistička regresija, stroj potpornih vektora i LSTM povratna neuronska mreža. Za problem binarne klasifikacije sentimenta dobivena je točnost 78\%, dok je za višeklasni problem dobivena točnost 60\% na skupu za testiranje. Zbog nedostatka označenih podataka korišteno je aktivno učenje modela. Naučeni modeli su korišteni u analizi sentimenta unutar glazbenih žanrova. The analysis of sentiment has been accomplished in a number of ways. Various text representations such as TF-IDF representation, representation obtained by applying the BM25 ranking function, and GloVe model for learning vector word representations were used to train models. Models were used in the design of the system: logistic regression, support vector machine and LSTM recurrent neural network. Accuracy of 78 \% was obtained for binary classification and for a multiclass problem, 60 \% accuracy was obtained on the test set. Active learning was used due to the lack of labeled data. Learned models were used in sentiment analysis within musical genres. |
Databáze: | OpenAIRE |
Externí odkaz: |