Unmanned Aircraft System (UAS) Structure-From-Motion (SfM) for monitoring the changed flow paths and wetness in minerotrophic peatland restoration

Autor: Ikkala, Lauri, Ronkanen, Anna-Kaisa, Ilmonen, Jari, Similä, Maarit, Rehell, Sakari, Kumpula, Timo, Päkkilä, Lassi, Klöve, Björn, Marttila, Hannu
Přispěvatelé: Suomen ympäristökeskus, The Finnish Environment Institute
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Remote Sensing
Volume 14
Issue 13
Pages: 3169
Popis: Peatland restoration aims to achieve pristine water pathway conditions to recover dispersed wetness, water quality, biodiversity and carbon sequestration. Restoration monitoring needs new methods for understanding the spatial effects of restoration in peatlands. We introduce an approach using high-resolution data produced with an unmanned aircraft system (UAS) and supported by the available light detection and ranging (LiDAR) data to reveal the hydrological impacts of elevation changes in peatlands due to restoration. The impacts were assessed by analyzing flow accumulation and the SAGA Wetness Index (SWI). UAS campaigns were implemented at two boreal minerotrophic peatland sites in degraded and restored states. Simultaneously, the control campaigns mapped pristine sites to reveal the method sensitivity of external factors. The results revealed that the data accuracy is sufficient for describing the primary elevation changes caused by excavation. The cell-wise root mean square error in elevation was on average 48 mm when two pristine UAS campaigns were compared with each other, and 98 mm when each UAS campaign was compared with the LiDAR data. Furthermore, spatial patterns of more subtle peat swelling and subsidence were found. The restorations were assessed as successful, as dispersing the flows increased the mean wetness by 2.9–6.9%, while the absolute changes at the pristine sites were 0.4–2.4%. The wetness also became more evenly distributed as the standard deviation decreased by 13–15% (a 3.1–3.6% change for pristine). The total length of the main flow routes increased by 25–37% (a 3.1–8.1% change for pristine), representing the increased dispersion and convolution of flow. The validity of the method was supported by the field-determined soil water content (SWC), which showed a statistically significant correlation (R2 = 0.26–0.42) for the restoration sites but not for the control sites, possibly due to their upslope catchment areas being too small. Despite the uncertainties related to the heterogenic soil properties and complex groundwater interactions, we conclude the method to have potential for estimating changed flow paths and wetness following peatland restoration.
Databáze: OpenAIRE