Long time evolution of train dynamics with respect to track geometry

Autor: Lestoille, N., Christian Soize, Perrin, G., Fünfschilling, C.
Přispěvatelé: Soize, Christian, Laboratoire de Modélisation et Simulation Multi Echelle (MSME), Université Paris-Est Marne-la-Vallée (UPEM)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS), SNCF - Direction de l'Innovation et de la Recherche, SNCF, Laboratoire Navier (navier umr 8205), Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-École des Ponts ParisTech (ENPC)-Centre National de la Recherche Scientifique (CNRS), This work was supported by SNCF, France, Centre National de la Recherche Scientifique (CNRS)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Université Paris-Est Marne-la-Vallée (UPEM)
Jazyk: angličtina
Rok vydání: 2014
Předmět:
Zdroj: HAL
The Second International Conference on Railway Technology: Research, Development and Maintenance (RAILWAYS 2014)
The Second International Conference on Railway Technology: Research, Development and Maintenance (RAILWAYS 2014), Apr 2014, Ajaccio, France. pp.1-14
Popis: International audience; This paper aims at characterizing the long time evolution of the vehicle-track system. The knowledge of the evolution of such a system is of great concern for the railway industry, in order to maintain a high level of safety and comfort in the high speed trains. We propose a computational stochastic approach to predict the long time evolution of a given track portion. The approach is based on an adaptation of the global stochastic model of track irregularities previously identified with a large experimental data basis. The nonlinear stochastic dynamics of the train excited by track irregularities are carried out using a computational multibody dynamics model. Some indicators concerning the dynamic responses of the train are introduced in order to start off the maintenance or not of the given track portion.
Databáze: OpenAIRE