Bilinear Strichartz estimates for the ZK equation and applications

Autor: Molinet, Luc, Pilod, Didier
Přispěvatelé: Laboratoire de Mathématiques et Physique Théorique (LMPT), Université de Tours (UT)-Centre National de la Recherche Scientifique (CNRS), Instituto de Matematica, Universidade Federal do Rio de Janeiro (UFRJ), Réseau Franco-Brésilien en Mathématiques, Université de Tours-Centre National de la Recherche Scientifique (CNRS)
Jazyk: angličtina
Rok vydání: 2015
Předmět:
Zdroj: Annales de l'Institut Henri Poincaré (C) Non Linear Analysis
Annales de l'Institut Henri Poincaré (C) Non Linear Analysis, Elsevier, 2015, 32 (2), pp.347-371
ISSN: 0294-1449
Popis: International audience; We prove that the associated initial value problem is locally well-posed in $H^s(\mathbb R^2)$ for $s>\frac12$ and globally well-posed in $H^1(\mathbb R\times \mathbb T)$ and in $H^s(\R^3) $ for $ s>1$. Our main new ingredient is a bilinear Strichartz estimate in the context of Bourgain's spaces which allows to control the high-low frequency interactions appearing in the nonlinearity of \eqref{ZK0}. In the $\mathbb R^2$ case, we also need to use a recent result by Carbery, Kenig and Ziesler on sharp Strichartz estimates for homogeneous dispersive operators. Finally, to prove the global well-posedness result in $ \R^3 $, we need to use the atomic spaces introduced by Koch and Tataru.
Databáze: OpenAIRE