Speaker recognition using discriminative learning of Large Margin GMM

Autor: Jourani, Reda
Přispěvatelé: Équipe Structuration, Analyse et MOdélisation de documents Vidéo et Audio (IRIT-SAMoVA), Institut de recherche en informatique de Toulouse (IRIT), Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3), Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse 1 Capitole (UT1), Université Fédérale Toulouse Midi-Pyrénées, Université Paul Sabatier - Toulouse III, Régine André-Obrecht, Cotutelle internationale avec l'Université Mohammed V Agdal - Faculté des Sciences de Rabat, Maroc.
Jazyk: francouzština
Rok vydání: 2012
Předmět:
Zdroj: Traitement du signal et de l'image [eess.SP]. Université Paul Sabatier-Toulouse III, 2012. Français
Popis: Most of state-of-the-art speaker recognition systems are based on Gaussian Mixture Models (GMM), trained using maximum likelihood estimation and maximum a posteriori (MAP) estimation. The generative training of the GMM does not however directly optimize the classification performance. For this reason, discriminative models, e.g., Support Vector Machines (SVM), have been an interesting alternative since they address directly the classification problem, and they lead to good performances. Recently a new discriminative approach for multiway classification has been proposed, the Large Margin Gaussian mixture models (LM-GMM). As in SVM, the parameters of LM-GMM are trained by solving a convex optimization problem. However they differ from SVM by using ellipsoids to model the classes directly in the input space, instead of half-spaces in an extended high-dimensional space. While LM-GMM have been used in speech recognition, they have not been used in speaker recognition (to the best of our knowledge). In this thesis, we propose simplified, fast and more efficient versions of LM-GMM which exploit the properties and characteristics of speaker recognition applications and systems, the LM-dGMM models. In our LM-dGMM modeling, each class is initially modeled by a GMM trained by MAP adaptation of a Universal Background Model (UBM) or directly initialized by the UBM. The models mean vectors are then re-estimated under some Large Margin constraints. We carried out experiments on full speaker recognition tasks under the NIST-SRE 2006 core condition. The experimental results are very satisfactory and show that our Large Margin modeling approach is very promising.; Depuis plusieurs dizaines d'années, la reconnaissance automatique du locuteur (RAL) fait l'objet de travaux de recherche entrepris par de nombreuses équipes dans le monde. La majorité des systèmes actuels sont basés sur l'utilisation des Modèles de Mélange de lois Gaussiennes (GMM) et/ou des modèles discriminants SVM, i.e., les machines à vecteurs de support. Nos travaux ont pour objectif général la proposition d'utiliser de nouveaux modèles GMM à grande marge pour la RAL qui soient une alternative aux modèles GMM génératifs classiques et à l'approche discriminante état de l'art GMM-SVM. Nous appelons ces modèles LM-dGMM pour Large Margin diagonal GMM. Nos modèles reposent sur une récente technique discriminante pour la séparation multi-classes, qui a été appliquée en reconnaissance de la parole. Exploitant les propriétés des systèmes GMM utilisés en RAL, nous présentons dans cette thèse des variantes d'algorithmes d'apprentissage discriminant des GMM minimisant une fonction de perte à grande marge. Des tests effectués sur les tâches de reconnaissance du locuteur de la campagne d'évaluation NIST-SRE 2006 démontrent l'intérêt de ces modèles en reconnaissance.
Databáze: OpenAIRE