Ranking Forests

Autor: Clémençon, Stéphan, Depecker, Marine, Vayatis, Nicolas
Přispěvatelé: Laboratoire Traitement et Communication de l'Information (LTCI), Institut Mines-Télécom [Paris] (IMT)-Télécom Paris, Département Images, Données, Signal (IDS), Télécom ParisTech, Télécom ParisTech-Institut Mines-Télécom [Paris] (IMT)-Centre National de la Recherche Scientifique (CNRS), Centre de Mathématiques et de Leurs Applications (CMLA), École normale supérieure - Cachan (ENS Cachan)-Centre National de la Recherche Scientifique (CNRS), Clémençon, Stephan
Jazyk: angličtina
Rok vydání: 2013
Předmět:
Zdroj: Journal of Machine Learning Research
Journal of Machine Learning Research, Microtome Publishing, 2013, 14, pp.39-73
ISSN: 1532-4435
1533-7928
Popis: International audience; The present paper examines how the aggregation and feature randomization principles underlying the algorithm RANDOM FOREST (Breiman, 2001) can be adapted to bipartite ranking. The approach taken here is based on nonparametric scoring and ROC curve optimization in the sense of the AUC criterion. In this problem, aggregation is used to increase the performance of scoring rules produced by ranking trees, as those developed in Clémençon and Vayatis (2009c). The present work describes the principles for building median scoring rules based on concepts from rank aggregation. Consistency results are derived for these aggregated scoring rules and an algorithm called RANKING FOREST is presented. Furthermore, various strategies for feature randomization are explored through a series of numerical experiments on artificial data sets.
Databáze: OpenAIRE