Forecasting regional wind production based on weather similarity and site clustering for the EEM20 Competition

Autor: Kevin Bellinguer, Valentin Mahler, Simon Camal, Georges Kariniotakis
Přispěvatelé: Centre Procédés, Énergies Renouvelables, Systèmes Énergétiques (PERSEE), Mines Paris - PSL (École nationale supérieure des mines de Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), International Institute of Forecasters, PhD of Kevin Bellinguer supported by ANRT/CIFRE in collaboration with CNR, PhD of Valentin Mahler supported by ADEME., European Project: 864337,Smart4RES, MINES ParisTech - École nationale supérieure des mines de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: 40th International Symposium on Forecasting
40th International Symposium on Forecasting, International Institute of Forecasters, Oct 2020, Virtual Event, Brazil
HAL
Popis: International audience; Precise probabilistic forecasting tools of wind power generation are essential for solving problems related to the impact of wind generation uncertainty on electrical systems. In this context, the International Conference on the European Energy Market EEM20 set up a competition aiming at forecasting wind power generation for the four Swedish bidding zones. Participants had to generate day-ahead quantile forecasts of the aggregated wind power production from Numerical Weather Predictions (NWPs) ensembles provided all over the country [1].
Databáze: OpenAIRE