Asymptotic uniform stability in probability of nontrivial solution of nonlinear stochastic systems

Autor: Barbata, Asma, Zasadzinski, Michel, Chatbouri, Ridha, Souley Ali, Harouna
Přispěvatelé: Centre de Recherche en Automatique de Nancy (CRAN), Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), Unité de recherche analyse et contrôle des équations aux dérivées partielles, Université de Monastir (Université de Monastir), Laboratoire de mathématique physique, fonctions spéciales et applications (MAPFSA), Université de Sousse-Ecole Supérieure des Sciences et de Technologie de Hammam Sousse, Zasadzinski, Michel
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: Nonlinear Dynamics and Systems Theory
Nonlinear Dynamics and Systems Theory, Informath Publishing Group, 2019, 19 (4), pp.464-473
ISSN: 1562-8353
1813-7385
Popis: International audience; The aim of this paper is to study the asymptotic uniform stability in probability when a nonlinear stochastic differential equation does not have a trivial solution. For nontrivial solutions of a nonlinear stochastic differential equation, the problem of asymptotic uniform stability in probability is reformulated for a ball of radius R>0. Based on this new formulation, a theorem for the asymptotic uniform stability in probability for this ball is proposed by using a Lyapunov approach.
Databáze: OpenAIRE