Autor: |
Robert Geister, Buch, J. -P, Niedermeier, D., Gamba, G., Canzian, L., Pozzobon, O. |
Předmět: |
|
Zdroj: |
Scopus-Elsevier |
Popis: |
Within this work, that was carried out following a call for tender by the European Aviation Safety Agency (EASA), the impact of cybersecurity threats especially on Global Navigation Satellite Systems (GNSS) and Flight Management Systems (FMS) was assessed. In order to do so, simulation studies were carried out. The German Aerospace Center (DLR) operates the research simulator AVES (Air Vehicle Simulator) which was used for the flight simulation exercises within this project. The AVES combines two facilities to simulate airplanes and helicopters to the highest technical level. The cockpit unit used was a complete replica of an Airbus A320. The corresponding simulation software (incl. flight dynamical models and system simulation) is entirely developed at DLR according to the official documentation providing full access and flexibility in the investigations. The motion platform provides a motion system with six degrees of freedom, whose motion cueing algorithms can be specifically tuned for a given task if needed. This unique infrastructure has been built during the last years with the aim of providing a highly-representative test platform for new cockpit functions and flight crew training research. To assess the impact of cyber-attacks on GNSS and FMS, different scenarios were developed and ranked by their likelihood of occurrence and their expected impact on safety and the continuation of the flight. Based on the identified threats, realistic scenarios according to airline operations were designed and implemented into the AVES research simulator. Synthetic error models reproducing the same effects on the aircraft systems as identified in the projects preceding GNSS and FMS threat assessment work were integrated into the AVES software architecture. In particular, the impact of GNSS jamming and spoofing attacks during satellite based approach procedures was investigated. In addition, attacks on the FMS through the open protocol of the Aircraft Communications Addressing and Reporting System (ACARS) were assessed. In this paper, we are going to present the results that were obtained during the simulations with airline pilots holding Air Transport Pilot Licenses (ATPL) with a special focus on the attacks on the FMS and its related systems. We are going to describe the simulation setup and the reaction of the pilots and we will give pilot training and cockpit systems design recommendations in order to mitigate risks that stem from the investigated threat scenarios. |
Databáze: |
OpenAIRE |
Externí odkaz: |
|