Graphene-based nanoscale version of da Vinci's reciprocal structures
Autor: | Fonseca, Alexandre Fontes da, 1973, Galvão, Douglas Soares, 1961 |
---|---|
Přispěvatelé: | UNIVERSIDADE ESTADUAL DE CAMPINAS |
Rok vydání: | 2021 |
Předmět: | |
Zdroj: | Repositório Institucional da Unicamp Universidade Estadual de Campinas (UNICAMP) instacron:UNICAMP Repositório da Produção Científica e Intelectual da Unicamp |
Popis: | Agradecimentos: AFF and DSG are fellows of the Brazilian Agency CNPq (grants 311587/2018-6 and 310052/2019-0, respectively). AFF acknowledges the grant #2018/02992-4 from São Paulo Research Foundation (FAPESP) and from FAEPEX/UNICAMP. DSG acknowledges the Center for Computational Engineering and Sciences at Unicamp for financial support through the FAPESP/CEPID Grant #2013/08293-7. This research also used the computing resources and assistance of the John David Rogers Computing Center (CCJDR) in the Institute of Physics "Gleb Wataghin", University of Campinas Abstract: A reciprocal structure (RS) is a mechanical resistant structure formed by a set of self-supporting elements satisfying certain conditions of structural reciprocity (SR). The first condition is that each element of the structure has to support and be supported by the others. The second condition is that these functions cannot occur in the same part of the element. These two properties make beams and two-dimensional materials very much appropriate to build RSs. Commonly seen in floors or roofs, SR is also present in art, religious symbols, and decorative objects. Da Vinci has drawn several examples of such RSs. Here, thermal stability and mechanical resistance against impacts of simple nano versions of da Vinci's RSs based on graphene nanoribbons, were investigated through fully atomistic molecular dynamics (MD) simulations. We considered structures with three and four joins with and without RS topologies. Our MD results showed that 3-fold RSs are not thermally stable and that the 4-fold RSs can become thermally stable as long as the graphene nanoribbons have their external extremities fixed and either are not lengthy or have a kind of notch at the nanoribbons junctions. For these thermally stable structures, our results show that those with RS topologies are more impact resistant than those without SR, despite the fact that the used graphene nanoribbons are highly pliable. We discuss these results in terms of the number of joins, energy absorption, and stress on the structures. We discuss possible applications in nanoengineering CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQ FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO - FAPESP Fechado |
Databáze: | OpenAIRE |
Externí odkaz: |