Popis: |
The model of multi-layered neural networks of the back-propagation type is well-known for their universal approximation capability and even the standard back-propagation training algorithm used for their adjustment often provides results applicable to real-world problems. The present study deals with the issue of the multi-layered neural networks. It describes selected variants of training algorithms, mainly the standard back-propagation training algorithm and the scaled conjugate gradients algorithm, which ranks among the extremely fast second-order algorithms. One of the parts of the present study is also an application for the visualisation of the structure of multi-layered neural networks whose solution is designed with respect to its potential utilization in the education of artificial intelligence. The first part of the study introduces the subject matter and formally describes both algorithms, followed by a short description of other variants of the algorithms and their analysis. The next part discusses the selection of the appropriate programming language for the implementation of the application, specifies the goals and describes the implementation works. The conclusion summarizes the test results of the speed and implementation comparison with the selected noncommercial-based software ENCOG. |