Planck 2015 results
Autor: | Adam, R., Ade, P. A R, Aghanim, N., Akrami, Y., Alves, M. I R, Arguëso, F., Arnaud, M., Arroja, F., Ashdown, M., Aumont, J., Baccigalupi, C., Ballardini, M., Banday, A. J., Barreiro, R. B., Bartlett, J. G., Bartolo, N., Basak, S., Battaglia, P., Battaner, E., Battye, R., Benabed, K., Benoît, A., Benoit-Lévy, A., Bernard, J. P., Bersanelli, M., Bertincourt, B., Bielewicz, P., Bikmaev, I., Bock, J. J., Böhringer, H., Bonaldi, A., Bonavera, L., Bond, J. R., Borrill, J., Bouchet, F. R., Boulanger, F., Bucher, M., Burenin, R., Burigana, C., Butler, R. C., Calabrese, E., Cardoso, J. F., Carvalho, P., Casaponsa, B., Castex, G., Catalano, A., Challinor, A., Chamballu, A., Chary, R. R., Chiang, H. C., Chluba, J., Chon, G., Christensen, P. R., Church, S., Clemens, M., Clements, D. L., Colombi, S., Colombo, L. P L, Combet, C., Comis, B., Contreras, D., Couchot, F., Coulais, A., Crill, B. P., Cruz, M., Curto, A., Cuttaia, F., Danese, L., Davies, R. D., Davis, R. J., De Bernardis, P., De Rosa, A., De Zotti, G., Delabrouille, J., Delouis, J.-M., Désert, F. X., Di Valentino, E., Dickinson, C., Diego, J. M., Dolag, K., Dole, H., Donzelli, S., Doré, O., Douspis, M., Ducout, A., Dunkley, J., Dupac, X., Efstathiou, G., Eisenhardt, P. R M, Elsner, F., Enßlin, T. A., Eriksen, H. K., Falgarone, E., Fantaye, Y., Farhang, M., Feeney, S., Fergusson, J., Fernandez-Cobos, R., Feroz, F., Finelli, F., Florido, E., Forni, O., Frailis, M., Fraisse, A. A., Franceschet, C., Franceschi, E., Frejsel, A., Frolov, A., Galeotta, S., Galli, S., Ganga, K., Gauthier, C., Génova-Santos, R. T., Gerbino, M., Ghosh, T., Giard, M., Giraud-Héraud, Y., Giusarma, E., Gjerløw, E., González-Nuevo, J., Górski, K. M., Grainge, K. J B, Gratton, S., Gregorio, A., Gruppuso, A., Gudmundsson, J. E., Hamann, J., Handley, W., Hansen, F. K., Hanson, D., Harrison, D. L., Heavens, A., Helou, G., Henrot-Versillé, S., Hernández-Monteagudo, C., Herranz, D., Hildebrandt, S. R., Hivon, E., Hobson, M., Holmes, W. A., Hornstrup, A., Hovest, W., Huang, Z., Huffenberger, K. M., Hurier, G., Ilić, S., Jaffe, A. H., Jaffe, T. R., Jin, T., Jones, W. C., Juvela, M., Karakci, A., Keihänen, E., Keskitalo, R., Khamitov, I., Kiiveri, K., Kim, Jaiseung, Kisner, T. S., Kneissl, R., Knoche, J., Knox, L., Krachmalnicoff, N., Kunz, M., Kurki-Suonio, H., Lacasa, F., Lagache, G., Lähteenmäki, A., Lamarre, J. M., Langer, M., Lasenby, A., Lattanzi, M., Lawrence, C. R., Le Jeune, M., Leahy, J. P., Lellouch, E., Leonardi, R., León-Tavares, J., Lesgourgues, J., Levrier, F., Lewis, A., Liguori, M., Lilje, P. B., Lilley, M., Linden-Vørnle, M., Lindholm, V., Liu, H., López-Caniego, M., Lubin, P. M., Ma, Y.-Z., Maciás-Pérez, J. F., Maggio, G., Maino, D., Mak, D. S Y, Mandolesi, N., Mangilli, A., Marchini, A., Marcos-Caballero, A., Marinucci, D., Maris, M., Marshall, D. J., Martin, P. G., Martinelli, M., Martínez-González, E., Masi, S., Matarrese, S., Mazzotta, P., Mcewen, J. D., Mcgehee, P., Mei, S., Meinhold, P. R., Melchiorri, A., Melin, J. B., Mendes, L., Mennella, A., Migliaccio, M., Mikkelsen, K., Millea, M., Mitra, S., Miville-Deschênes, M. A., Molinari, D., Moneti, A., Montier, L., Moreno, R., Morgante, G., Mortlock, D., Moss, A., Mottet, S., Münchmeyer, M., Munshi, D., Murphy, J. A., Narimani, A., Naselsky, P., Nastasi, A., Nati, F., Natoli, P., Negrello, M., Netterfield, C. B., Nørgaard-Nielsen, H. U., Noviello, F., Novikov, D., Novikov, I., Olamaie, M., Oppermann, N., Orlando, E., Oxborrow, C. A., Paci, F., Pagano, L., Pajot, F., Paladini, R., Pandolfi, S., Paoletti, D., Partridge, B., Pasian, F., Patanchon, G., Pearson, T. J., Peel, M., Peiris, H. V., Pelkonen, V. M., Perdereau, O., Perotto, L., Perrott, Y. C., Perrotta, F., Pettorino, V., Piacentini, F., Piat, M., Pierpaoli, E., Pietrobon, D., Plaszczynski, S., Pogosyan, D., Pointecouteau, E., Polenta, G., Popa, L., Pratt, G. W., Prézeau, G., Prunet, S., Puget, J. L., Rachen, J. P., Racine, B., Reach, W. T., Rebolo, R., Reinecke, M., Remazeilles, M., Renault, C., Renzi, A., Ristorcelli, I., Rocha, G., Roman, M., Romelli, E., Rosset, C., Rossetti, M., Rotti, A., Roudier, G., Rouillé D'orfeuil, B., Rowan-Robinson, M., Rubinõ-Martín, J. A., Ruiz-Granados, B., Rumsey, C., Rusholme, B., Said, N., Salvatelli, V., Salvati, L., Sandri, M., Sanghera, H. S., Santos, D., Saunders, R. D E, Sauvé, A., Savelainen, M., Savini, G., Schaefer, B. M., Schammel, M. P., Scott, D., Seiffert, M. D., Serra, P., Shellard, E. P S, Shimwell, T. W., Shiraishi, M., Smith, K., Souradeep, T., Spencer, L. D., Spinelli, M., Stanford, S. A., Stern, D., Stolyarov, V., Stompor, R., Strong, A. W., Sudiwala, R., Sunyaev, R., Sutter, P., Sutton, D., Suur-Uski, A. S., Sygnet, J. F., Tauber, J. A., Tavagnacco, D., Terenzi, L., Texier, D., Toffolatti, L., Tomasi, M., Tornikoski, M., Tramonte, D., Tristram, M., Troja, A., Trombetti, T., Tucci, M., Tuovinen, J., Türler, M., Umana, G., Valenziano, L., Väliviita, J., Van Tent, F., Vassallo, T., Vibert, L., Vidal, M., Viel, M., Vielva, P., Villa, F., Wade, L. A., Walter, B., Wandelt, B. D., Watson, R., Wehus, I. K., Welikala, N., Weller, J., White, M., White, S. D M, Wilkinson, A., Yvon, D., Zacchei, A., Zibin, J. P., Zonca, A. |
---|---|
Přispěvatelé: | Cardiff University, Institut national de physique nucléaire et de physique des particules, Kavli Institute for Cosmology Cambridge, International School for Advanced Studies, IRAP, Universidad de Cantabria, Sapienza University of Rome, Università Degli Studi di Trieste, Instituto Carlos I de Física Teórica y Computacional, UMR7095, INAF/IASF Milano, Jet Propulsion Laboratory, University of Manchester, University of Toronto, University of California Berkeley, Institut d 'Astrophysique de Paris, Université Sorbonne Paris Cité, Istituto di Astrofisica Spaziale e Fisica Cosmica di Bologna, University of Oxford, Telecom ParisTech, Service d'Astrophysique CEA, Niels Bohr Institute, Jodrell Bank Centre for Astrophysics, Università La Sapienza, Centre National de la Recherche Scientifique (CNRS), Urbanización Villafranca Del Castillo, University of Cambridge, Max-Planck-Institut für Astrophysik, University of Oslo, Osservatorio Astronomico di Trieste, University of Chicago, University of Warsaw, McGill University, Université Paris-Sud, Danmarks Tekniske Universitet, Florida State University, Imperial College London, University of Helsinki, Lawrence Berkeley National Laboratory, University of Milano, Department of Radio Science and Engineering, LERMA - Laboratoire d'Etudes du Rayonnement et de la Matiere en Astrophysique et Atmospheres, University of Ferrara, Centro de Gestão e Estudos Estratégicos, CERN, University of California Santa Barbara, California Institute of Technology, University of Nottingham, National University of Ireland, Galway, Princeton University, RAS - P.N. Lebedev Physics Institute, Haverford College, Institut für Theoretische Astrophysik, University of Southern California, Osservatorio Astronomico Roma, Instituto de Astrofísica de Canarias, Università di Roma Tor Vergata, University of British Columbia, Special Astrophysical Observatory of the Russian Academy of Sciences, European Space Research and Technology Centre, Università degli Studi eCampus, University of Geneva, Trinity College Dublin, INAF, Osservatorio Astrofisico di Catania, Université Paris Diderot, Aalto-yliopisto, Aalto University, Stanford University, Stockholm University, University of Sussex, Institute for Space Sciences, Universities Space Research Association, University College London, Space Research Institute of the Russian Academy of Sciences, CNRS/IN2P3, Universite de Toulouse, Instituto de Física de Cantabria (CSIC-Universidad de Cantabria), Jet Propulsion Laboratory, California Institute of Technology, AstroParticule et Cosmologie, Università Degli Studi di Padova, Istituto Nazionale di Fisica Nucleare, Sezione di Padova, I-35131 Padova, Italy, University of Granada, CNRS, Università degli Studi di Milano, Nicolaus Copernicus Astronomical Center, University of California at Berkeley, Universite Paris Sorbonne - Paris IV, INAF/IASF Bologna, Università di Ferrara, INFN, Sezione di Bologna, UMR 5141, Laboratoire AIM, Service d’Astrophysique, DSM\IRFU, CEA\Saclay, Institut d'Astrophysique Spatiale, University of KwaZulu-Natal, Johns Hopkins University, INAF, Osservatorio Astronomico di Padova, UMR 7095, Ludwig Maximilian University of Munich, Institut Universitaire de France, European Space Agcy, European Space Agency, ESAC, Planck Sci Off, Shahid Beheshti University, National Taiwan University, Stockholms universitet, NORDITA, Istituto Nazionale di Fisica Nucleare, University of Sydney, Centro de Estudios de la Física del Cosmos de Aragón, Technical University of Denmark, European Southern Observatory Santiago, ALMA Santiago Central Offices, University of California, Université de Genève, African Institute for Mathematical Sciences, Helsinki Institute of Physics, Aix Marseille Universite, Metsähovi Radio Observatory, INFN, Sezione di Ferrara, RWTH Aachen University, INFN, Sezione di Padova, University of California, Santa Barbara, INAF, Osservatorio Astronomico di Trieste, Universite Paris-Sud, INFN, Sezione di Roma 1, University of Heidelberg, Gran Sasso Science Institute, CEA Saclay, CEA, DSM Irfu SPP, Inter-University Centre for Astronomy and Astrophysics, CNRS Centre National de la Recherche Scientifique, National University of Ireland, University of Copenhagen, ASI Science Data Center, RAS - Pn Lebedev Physics Institute, INAF, Osservatorio Astronomico di Roma, Université Pierre and Marie Curie, Radboud University Nijmegen, Instituto Astrofisico de Canarias, CSIC, Universidad de La Laguna, Department of Applied Physics, ROTA – Topological superfluids, Special Astrophysical Observatory, Russian Academy of Sciences, Kazan Federal University, Space Research Institute, Russian Academy of Sciences, ESTEC - European Space Research and Technology Centre, Università degli Studi e-Campus, Universidad de Oviedo, University of Illinois at Urbana-Champaign, Université Paris-Saclay, University of Oviedo, IRFM-CEA, CEA Saclay, University of Bologna, Astroparticle and Cosmology Laboratory, University of Padova, Max Planck Institute for Extraterrestrial Physics, Russian Academy of Sciences, INAF - Osservatorio Astronomico di Padova, Institut de Planétologie et d'Astrophysique de Grenoble, European Space Astronomy Centre, INAF - Osservatorio Astronomico di Trieste, Simon Fraser University, TÛBITAK National Observatory, University of California Davis, Heidelberg University, Observatoire de Paris, University of Alberta, Inter-University Centre for Astronomy and Astrophysics India, Leiden University, Perimeter Institute for Theoretical Physics, Ludwig-Maximilians-University, University Observatory Munich, Facultad de Ciencias, Université Paris 13, School of Physics and Astronomy, Osservatorio Astronomicodi Roma, Universite Joseph Fourier, Université Grenoble Alpes, European Space Agency - ESA |
Jazyk: | angličtina |
Rok vydání: | 2016 |
Předmět: |
statistical [Methods]
Diffuse radiation Large-scale structure of Universe Astrophysics::High Energy Astrophysical Phenomena Local insterstellar matter Cosmological parameters Astrophysics::Cosmology and Extragalactic Astrophysics Surveys clusters: general [Galaxies] Cosmic background radiation Early Universe instruments [Space vehicles] theory [Cosmology] Polarization Dark energy observations [Cosmology] data analysis [Methods] general [Galaxy] Astrophysics::Galaxy Astrophysics detectors [Instrumentation] general [Radiation mechanisms] polarimeters [Instrumentation] general [ISM] Astrophysics::Instrumentation and Methods for Astrophysics Astronomy and Astrophysics Inflation ISM [Radio continuum] Space and Planetary Science 115 Astronomy and space science Magnetic fields Gravitation |
Popis: | This paper presents cosmological results based on full-mission Planck observations of temperature and polarization anisotropies of the cosmic microwave background (CMB) radiation. Our results are in very good agreement with the 2013 analysis of the Planck nominal-mission temperature data, but with increased precision. The temperature and polarization power spectra are consistent with the standard spatially-flat 6-parameter ΛCDM cosmology with a power-law spectrum of adiabatic scalar perturbations (denoted "base ΛCDM" in this paper). From the Planck temperature data combined with Planck lensing, for this cosmology we find a Hubble constant, H0 = (67.8 ± 0.9) km s-1Mpc-1, a matter density parameter Ωm = 0.308 ± 0.012, and a tilted scalar spectral index with ns = 0.968 ± 0.006, consistent with the 2013 analysis. Note that in this abstract we quote 68% confidence limits on measured parameters and 95% upper limits on other parameters. We present the first results of polarization measurements with the Low FrequencyInstrument at large angular scales. Combined with the Planck temperature and lensing data, these measurements give a reionization optical depth of τ = 0.066 ± 0.016, corresponding to a reionization redshift of \hbox{$z-{\rm re}=8.8{+1.7}-{-1.4}$}. These results are consistent with those from WMAP polarization measurements cleaned for dust emission using 353-GHz polarization maps from the High Frequency Instrument. We find no evidence for any departure from base ΛCDM in the neutrino sector of the theory; for example, combining Planck observations with other astrophysical data we find Neff = 3.15 ± 0.23 for the effective number of relativistic degrees of freedom, consistent with the value Neff = 3.046 of the Standard Model of particle physics. The sum of neutrino masses is constrained to â'mν < 0.23 eV. The spatial curvature of our Universe is found to be very close to zero, with | ΩK | < 0.005. Adding a tensor component as a single-parameter extension to base ΛCDM we find an upper limit on the tensor-to-scalar ratio of r0.002< 0.11, consistent with the Planck 2013 results and consistent with the B-mode polarization constraints from a joint analysis of BICEP2, Keck Array, and Planck (BKP) data. Adding the BKP B-mode data to our analysis leads to a tighter constraint of r0.002 < 0.09 and disfavours inflationarymodels with a V(φ) φ2 potential. The addition of Planck polarization data leads to strong constraints on deviations from a purely adiabatic spectrum of fluctuations. We find no evidence for any contribution from isocurvature perturbations or from cosmic defects. Combining Planck data with other astrophysical data, including Type Ia supernovae, the equation of state of dark energy is constrained to w =-1.006 ± 0.045, consistent with the expected value for a cosmological constant. The standard big bang nucleosynthesis predictions for the helium and deuterium abundances for the best-fit Planck base ΛCDM cosmology are in excellent agreement with observations. We also constraints on annihilating dark matter and onpossible deviations from the standard recombination history. In neither case do we find no evidence for new physics. The Planck results for base ΛCDM are in good agreement with baryon acoustic oscillation data and with the JLA sample of Type Ia supernovae. However, as in the 2013 analysis, the amplitude of the fluctuation spectrum is found to be higher than inferred from some analyses of rich cluster counts and weak gravitational lensing. We show that these tensions cannot easily be resolved with simple modifications of the base ΛCDM cosmology. Apart from these tensions, the base ΛCDM cosmology provides an excellent description of the Planck CMB observations and many other astrophysical data sets. |
Databáze: | OpenAIRE |
Externí odkaz: |