SparseBM: A Python Module for Handling Sparse Graphs with Block Models

Autor: Frisch, Gabriel, Leger, Jean-Benoist, Grandvalet, Yves
Přispěvatelé: Heuristique et Diagnostic des Systèmes Complexes [Compiègne] (Heudiasyc), Université de Technologie de Compiègne (UTC)-Centre National de la Recherche Scientifique (CNRS), Frisch, Gabriel
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Popis: The stochastic and latent block models are clustering and coclustering tools that are commonly used for network analyses, such as community detection or collaborative filtering. We present a variational inference algorithm for the stochastic block model and the latent block model for sparse graphs, which leverages on the sparsity of edges to scale up to a very large number of nodes. This algorithm is implemented in SparseBM, a Python module that takes advantage of the hardware speed up provided by graphics processing units (GPU).
Databáze: OpenAIRE