Non-linear decomposition method for spectral CT

Autor: Hohweiller, Tom
Přispěvatelé: Imagerie Tomographique et Radiothérapie, Centre de Recherche en Acquisition et Traitement de l'Image pour la Santé (CREATIS), Université Jean Monnet [Saint-Étienne] (UJM)-Hospices Civils de Lyon (HCL)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Jean Monnet [Saint-Étienne] (UJM)-Hospices Civils de Lyon (HCL)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Centre National de la Recherche Scientifique (CNRS)-Institut National de la Santé et de la Recherche Médicale (INSERM), Université de Lyon, INSA de Lyon, Bruno Sixou, Nicolas Ducros, Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Hospices Civils de Lyon (HCL)-Université Jean Monnet - Saint-Étienne (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Hospices Civils de Lyon (HCL)-Université Jean Monnet - Saint-Étienne (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Hohweiller, Tom
Jazyk: francouzština
Rok vydání: 2019
Předmět:
Zdroj: Imagerie. Université de Lyon; INSA de Lyon, 2019. Français
Imagerie. Université de Lyon; INSA de Lyon, 2019. Français. ⟨NNT : ⟩
Popis: Spectral tomodensitometry is a new emerging x-ray imaging modality. If the dual-energy principle was already known for quite some time, new developments on photon-counting detectors now allowing acquiring more energy bins than before. This modality allows reducing some artifacts presents in x-ray imaging, such as beam hardening, but mostly to decompose the data into the chemical composition of the imaged tissue. It also enables the use of new markers (i.e. gold) with an energic discontinuity. The use of these markers also allows to locate and quantify them in the patient, granting great potential for medical imaging. Decomposition in the projection domain followed by a tomographic reconstruction is a classical processing for those spectral data. However, decomposition methods in the projection domain are unstable for a high number of energy bins. Classical calibration technic is numerically unstable for more than two energy bins. This thesis aims to developed new material decomposition methods in the projections domains. After expressing the spectral forward model, the decomposition problem is expressed and dealt as a non-linear inverse problem. It will be solved by minimizing a cost function composed by a term characterizing the fidelity of the decomposition regarding the data and an a priori of the decomposed material maps. We will firstly present an adaptation of the cost function that takes into account the Poissonian noise on the data. This formulation allows having better decomposed maps for a high level of noise than classical formulation. Then, two constrained algorithms will be presented. The first one, a projected Gauss-Newton algorithm, that enforces positivity on the decomposed maps, allows having better decomposed maps than an unconstrained algorithm. To improve the first algorithm, another one was developed that also used an egality constrain. The equality allows having images with fewer artifacts than before. These methods are tested on a numerical phantom of a mouse and thorax. To speed up the decomposition process, an automatic choice of parameters is presented, which allow faster decomposition while keeping good maps. Finally, the methods are tested on experimental data that are coming from a spectral scanner prototype.
La tomodensitométrie spectrale est une modalité d’imagerie par rayons X émergente. Si le principe de la double énergie est plus ancien, des développements récents sur des détecteurs à comptage de photons permettent d’acquérir des données résolues en énergie sur plusieurs plages. Cette modalité permet de réduire un certain nombre d’artéfacts classiques dont ceux liés au durcissement de spectre, mais surtout de remonter à la composition chimique des tissus. Les données spectrales permettent également d’utiliser de nouveaux agents de contraste (comme l’or par exemple) qui présentent des discontinuités énergétiques. La possibilité d’utiliser d’autres marqueurs et de quantifier leurs présences dans le patient donne à cette modalité un fort potentiel dans le domaine de l’imagerie médicale. Une approche classique pour le traitement des données spectrales est d’effectuer une décomposition en base de matériaux préalables à la reconstruction tomographique. Cependant, les méthodes de décomposition dans le domaine des projections avec un grand nombre de plages d’énergies n’en sont qu’à leurs débuts. Les techniques classiques par calibration, ne sont plus numériquement stables lorsqu’il y a plus de deux plages disponibles.Le but de cette thèse est de développer de nouvelles méthodes de décomposition des données spectrales dans le domaine des projections. Après avoir formalisé le problème direct de la tomodensitométrie spectrale, le problème de décomposition en base de matériaux sera exprimé et traité comme un problème inverse non linéaire. Il sera résolu en minimisant une fonction de coût incluant un terme caractérisant la fidélité de la décomposition par rapport aux données et un a priori sur les cartes de matériaux projetées. Ces travaux présenteront tout d’abord une adaptation de la fonctionnelle prenant en compte la nature Poissonienne du bruit. Cette formulation permet d’obtenir de meilleures décompositions pour de forts niveaux de bruit par rapport à la formulation classique. Ensuite, deux algorithmes de minimisation incluant une contrainte de positivité additionnelle seront proposés. Le premier, un algorithme de Gauss-Newton projeté, permet d’obtenir des cartes rapidement et de meilleure qualité que des méthodes non contraintes. Pour améliorer les résultats du premier algorithme, une seconde méthode, de type ADMM, ajoute une contrainte d’égalité. Cette contrainte a permis de diminuer les artefacts présents dans l’image. Ces méthodes ont été évaluées sur des données numériques de souris et de thorax humain. Afin d’accélérer et de simplifier les méthodes, un choix automatique des hyperparamètres est proposé qui permet de diminuer fortement le temps de calcul tout en gardant de bonnes décompositions. Finalement, ces méthodes sont testées sur des données expérimentales provenant d’un prototype de scanner spectral.
Databáze: OpenAIRE