Autor: |
Alazzo, Ali, Al-Natour, Mohammad, Spriggs, Keith, Stolnik, Snjezana, Ghaemmaghami, Amir, Kim, Dong-Hyun, Alexander, Cameron |
Jazyk: |
angličtina |
Rok vydání: |
2019 |
ISSN: |
2515-4184 |
Popis: |
Cationic polymers have emerged as a promising alternative to viral vectors in gene therapy. They are cheap to scale up, easy to functionalise and also presume to be safer than the viral vectors, however many of them are cytotoxic. The large number of polycations, designed to address the toxicity problem, raises a practical need to develop a fast and reliable method for assessing the safety of these materials. In this regard, metabolomics provides a detailed and comprehensive method that can assess the potential toxicity at the cellular and molecular level. Here, we applied metabolomics to investigate the impact of hyperbranched polylysine, hyperbranched polylysine-co-histidine and branched polyethyleneimine polyplexes at sub-toxic concentrations on the metabolic pathways of A459 and H1299 lung carcinoma cell lines. The study revealed that the polyplexes downregulated metabolites associated with glycolysis and the TCA cycle, and induced oxidative stress in both cell lines. The fold changes of the metabolites indicated that the polyplexes of polyethyleneimine and hyperbranched polylysine affected the metabolism much more than the polyplexes of hyperbranched polylysine-co-histidine. This was in line with transfection results, suggesting a correlation between the toxicity and transfection efficiency of these polyplexes. Our work highlights the importance of metabolomics approach not just to assess the potential toxicity of polyplexes but also to understand the molecular mechanism of them which could help to design more efficient vectors. |
Databáze: |
OpenAIRE |
Externí odkaz: |
|