Autor: |
Dorati, Federico, Barrett, Glyn A., Sanchez-Contreras, Maria, Arseneault, Tanya, San Jose, Mateo, Studholme, David, Murillo, Jesus, Caballero, Primitivo, Waterfield, Nicholas, Arnold, Dawn, Shaw, Liz J., Jackson, Robert W. |
Jazyk: |
angličtina |
Rok vydání: |
2018 |
Předmět: |
|
ISSN: |
2076-2607 |
Popis: |
Understanding the molecular mechanisms underpinning the ecological success of plant\ud pathogens is critical to develop strategies for controlling diseases and protecting crops. Recent\ud observations have shown that plant pathogenic bacteria, particularly Pseudomonas, exist in a range of\ud natural environments away from their natural plant host e.g., water courses, soil, non-host plants.\ud This exposes them to a variety of eukaryotic predators such as nematodes, insects and amoebae\ud present in the environment. Nematodes and amoeba in particular are bacterial predators while\ud insect herbivores may act as indirect predators, ingesting bacteria on plant tissue. We therefore\ud postulated that bacteria are probably under selective pressure to avoid or survive predation and have\ud therefore developed appropriate coping mechanisms. We tested the hypothesis that plant pathogenic\ud Pseudomonas syringae are able to cope with predation pressure and found that three pathovars show\ud weak, but significant resistance or toxicity. To identify the gene systems that contribute to resistance\ud or toxicity we applied a heterologous screening technique, called Rapid Virulence Annotation (RVA),\ud for anti-predation and toxicity mechanisms. Three cosmid libraries for P. syringae pv. aesculi, pv. tomato\ud and pv. phaseolicola, of approximately 2000 cosmids each, were screened in the susceptible/non-toxic\ud bacterium Escherichia coli against nematode, amoebae and an insect. A number of potential conserved\ud and unique genes were identified which included genes encoding haemolysins, biofilm formation,\ud motility and adhesion. These data provide the first multi-pathovar comparative insight to how\ud plant pathogens cope with different predation pressures and infection of an insect gut and provide a\ud foundation for further study into the function of selected genes and their role in ecological success. |
Databáze: |
OpenAIRE |
Externí odkaz: |
|