Comptage de représentations cuspidales congruentes
Autor: | Sécherre, Vincent |
---|---|
Přispěvatelé: | Laboratoire de Mathématiques de Versailles (LMV), Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS) |
Jazyk: | francouzština |
Rok vydání: | 2015 |
Předmět: |
Mathematics - Number Theory
Modular representations of p-adic reductive groups [MATH.MATH-RT]Mathematics [math]/Representation Theory [math.RT] Mathematics::Number Theory ℓ-adic lifting Mathematics::Representation Theory Mathematics - Representation Theory Jacquet-Langlands correspondence [MATH.MATH-NT]Mathematics [math]/Number Theory [math.NT] Cuspidal representations Congruences mod ℓ |
Popis: | Let $F$ be a non-Archimedean locally compact field of residue characteristic $p$, $G$ be an inner form of $GL_n(F)$, $n\ge1$, and $\ell$ be a prime number different from $p$. We give a numerical criterion for an integral $\ell$-adic irreducible cuspidal representation $\tilde\rho$ of $G$ to have a super\-cuspidal irreducible reduction mod $\ell$, by counting inertial classes of cuspidal representations that are congruent to the inertial class of $\tilde\rho$, generalizing results by Vign{\'e}ras and Dat. In the case the reduction mod $\ell$ of $\tilde\rho$ is not super\-cuspidal irreducible, we show that this counting argument allows us to compute its length and the size of the supercuspidal support of its irreducible components. We define an invariant $w(\tilde\rho)\ge1$ | the product of this length by this size | which is expected to behave nicely through the local Jacquet-Langlands correspondence. Given an $\ell$-modular irreducible cuspidal representation $\rho$ of $G$ and a positive integer $a$, we give a criterion for the existence of an integral $\ell$-adic irreducible cuspidal representation $\tilde\rho$ of $G$ such that its reduction mod $\ell$ contains $\rho$ and has length $a$. This allows us to obtain a formula for the cardinality of the set of reductions mod $\ell$ of inertial classes of $\ell$-adic irreducible cuspidal representations $\tilde\rho$ with given depth and invariant $w$. These results are expected to be useful to prove that the local Jacquet-Langlands correspondence preserves congruences mod $\ell$. Comment: in French |
Databáze: | OpenAIRE |
Externí odkaz: |