Automatic and Transparent Transfer of Theorems along Isomorphisms in the Coq Proof Assistant

Autor: Théo Zimmermann, Hugo Herbelin
Přispěvatelé: École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL), Preuves, Programmes et Systèmes (PPS), Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Design, study and implementation of languages for proofs and programs ( PI.R2 ), Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)-Inria Paris-Rocquencourt, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria), École normale supérieure - Paris (ENS-PSL)
Předmět:
Zdroj: HAL
Conference on Intelligent Computer Mathematics
Conference on Intelligent Computer Mathematics, 2015, Washington, D.C., United States
Popis: International audience; In mathematics, it is common practice to have several constructionsfor the same objects.Mathematicians will identify them modulo isomorphism and willnot worry later on which construction they use, as theorems provedfor one constructionwill be valid for all.When working with proof assistants, it is also common to see severaldata-types representing the same objects.This work aims at making the use of several isomorphic constructionsas simple and as transparent as it can be done informally inmathematics.This requires inferring automatically the missing proof-steps.We are designing an algorithm which finds and fills these missingproof-steps and we are implementing it as a plugin for Coq.
Databáze: OpenAIRE