Extended chiral Khuri-Treiman formalism for $\eta\to 3\pi$ and the role of the $a_0(980)$, $f_0(980)$ resonances

Autor: Albaladejo, M., Moussallam, B.
Přispěvatelé: Institut de Physique Nucléaire d'Orsay (IPNO), Université Paris-Sud - Paris 11 (UP11)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Sud - Paris 11 (UP11), Institut de Physique Nucléaire d'Orsay ( IPNO ), Université Paris-Sud - Paris 11 ( UP11 ) -Institut National de Physique Nucléaire et de Physique des Particules du CNRS ( IN2P3 ) -Centre National de la Recherche Scientifique ( CNRS )
Jazyk: angličtina
Rok vydání: 2017
Předmět:
Zdroj: Eur.Phys.J.C
Eur.Phys.J.C, 2017, 77 (8), pp.508. ⟨10.1140/epjc/s10052-017-5052-x⟩
European Physical Journal C: Particles and Fields
European Physical Journal C: Particles and Fields, Springer Verlag (Germany), 2017, 77 (8), pp.508. ⟨10.1140/epjc/s10052-017-5052-x⟩
Eur.Phys.J.C, 2017, 77 (8), pp.508. 〈10.1140/epjc/s10052-017-5052-x〉
ISSN: 1434-6044
1434-6052
DOI: 10.1140/epjc/s10052-017-5052-x⟩
Popis: Recent experiments on $\eta\to 3\pi$ decays have provided an extremely precise knowledge of the amplitudes across the Dalitz region which represent stringent constraints on theoretical descriptions. We reconsider an approach in which the low-energy chiral expansion is assumed to be optimally convergent in an unphysical region surrounding the Adler zero, and the amplitude in the physical region is uniquely deduced by an analyticity-based extrapolation using the Khuri-Treiman dispersive formalism. We present an extension of the usual formalism which implements the leading inelastic effects from the $K\bar{K}$ channel in the final-state $\pi\pi$ interaction as well as in the initial-state $\eta\pi$ interaction. The constructed amplitude has an enlarged region of validity and accounts in a realistic way for the influence of the two light scalar resonances $f_0(980)$ and $a_0(980)$ in the dispersive integrals. It is shown that the effect of these resonances in the low energy region of the $\eta \to 3\pi$ decay is not negligible, in particular for the $3\pi^0$ mode, and improves the description of the energy variation across the Dalitz plot. Some remarks are made on the scale dependence and the value of the double quark mass ratio $Q$.
Comment: 46 pages, 15 figures. v2: slightly augmented and includes numerical data files as supplementary material
Databáze: OpenAIRE