$\kappa$-Poincaré invariant quantum field theories with KMS weight

Autor: Poulain, T., Wallet, J. -C.
Přispěvatelé: Laboratoire de Physique Théorique d'Orsay [Orsay] (LPT), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Physique Théorique d'Orsay [Orsay] ( LPT ), Université Paris-Sud - Paris 11 ( UP11 ) -Centre National de la Recherche Scientifique ( CNRS ), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Zdroj: Phys.Rev.D
Phys.Rev.D, 2018, 98 (2), pp.025002. ⟨10.1103/PhysRevD.98.025002⟩
Physical Review D
Physical Review D, American Physical Society, 2018, 98 (2), pp.025002. ⟨10.1103/PhysRevD.98.025002⟩
ISSN: 1550-7998
1550-2368
DOI: 10.1103/PhysRevD.98.025002⟩
Popis: A natural star product for 4-d $\kappa$-Minkowski space is used to investigate various classes of $\kappa$-Poincar\'e invariant scalar field theories with quartic interactions whose commutative limit coincides with the usual $\phi^4$ theory. $\kappa$-Poincar\'e invariance forces the integral involved in the actions to be a twisted trace, thus defining a KMS weight for the noncommutative (C*-)algebra modeling the $\kappa$-Minkowski space. The associated modular group and Tomita modular operator are characterized. In all the field theories, the twist generates different planar one-loop contributions to the 2-point function which are at most UV linearly diverging. Some of these theories are free of UV/IR mixing. In the others, UV/IR mixing shows up in non-planar contributions to the 2-point function as a polynomial singularity at exceptional zero external momenta while staying finite at non-zero external momenta. These results are discussed together with the possibility for the KMS weight relative to the quantum space algebra to trigger the appearance of KMS state on the algebra of observables.
Comment: 32 pages, several paragraphs added, published in PRD
Databáze: OpenAIRE