Sur les minima des formes hamiltoniennes binaires définies positives

Autor: Chenevier, Gaëtan, Paulin, Frédéric
Přispěvatelé: Laboratoire de Mathématiques d'Orsay (LMO), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Mathématiques d'Orsay (LM-Orsay)
Jazyk: francouzština
Rok vydání: 2019
Předmět:
Popis: Let $A$ be a definite quaternion algebra over $\mathbb Q$, with discriminant $D_A$, and $O$ a maximal order of $A$. We show that the minimum of the positive definite hamiltonian binary forms over $O$ with discrimiminant $-1$ is $\sqrt{D_A}$. When the different of $O$ is principal, we provide an explicit form representing this minimum, and when $O$ is principal, we give the list of the equivalence classes of all such forms. We also give criteria and algorithms to determine when the different of $O$ is principal.
Comment: in French
Databáze: OpenAIRE