Sur les minima des formes hamiltoniennes binaires définies positives
Autor: | Chenevier, Gaëtan, Paulin, Frédéric |
---|---|
Přispěvatelé: | Laboratoire de Mathématiques d'Orsay (LMO), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), Laboratoire de Mathématiques d'Orsay (LM-Orsay) |
Jazyk: | francouzština |
Rok vydání: | 2019 |
Předmět: |
algèbre de quaternions
Maximal Order Mathematics - Number Theory [MATH.MATH-RA]Mathematics [math]/Rings and Algebras [math.RA] Codes AMS : 11E39 11R52 11L05 16H20 11E20 Binary Hamiltonian Forms Quaternion Algebras forme hamiltonienne binaire Mathematics - Rings and Algebras ordre maximal réseau euclidien [MATH.MATH-NT]Mathematics [math]/Number Theory [math.NT] Euclidean Lattice |
Popis: | Let $A$ be a definite quaternion algebra over $\mathbb Q$, with discriminant $D_A$, and $O$ a maximal order of $A$. We show that the minimum of the positive definite hamiltonian binary forms over $O$ with discrimiminant $-1$ is $\sqrt{D_A}$. When the different of $O$ is principal, we provide an explicit form representing this minimum, and when $O$ is principal, we give the list of the equivalence classes of all such forms. We also give criteria and algorithms to determine when the different of $O$ is principal. Comment: in French |
Databáze: | OpenAIRE |
Externí odkaz: |