NEW APPROACH IN LEGIONELLA WATER TREATMENT: THE PHOTODYNAMIC EFFECT OF THE AMPHIPHILIC PORPHYRIN

Autor: Lesar, Andrija, Begić, Gabrijela, Malatesti, Nela, Gobin, Ivana
Přispěvatelé: Maryna Feierabend, Olha Novytska, Dražen Vouk, Monika Šabić
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Popis: Legionella is an opportunistic premise plumbing pathogen that can be present in the municipal and other water supplies. The building water systems may provide conditions (such as low flow, water hardness, low disinfectant residual levels and optimal temperature) that promote Legionella growth to levels that may result in an increased risk to public health. The standard disinfection of water systems (periodic overheating of water and chlorination) toward prevention of Legionnaires' disease has often proved to be inefficient. It is therefore necessary to develop new approaches for removing Legionella from the water systems. One of the new methods is antimicrobial photodynamic therapy (aPDT) that includes combined activity of a photosensitizer (PS), molecular oxygen and visible light of appropriate wavelength to create singlet oxygen (1O2) and other oxygen reactive species (ROS) leading to the oxidation of numerous cellular components and cell death. In this study, newly synthesized cationic, amphiphilic porphyrin TMPyP3-C17H35, was tested against Legionella in tap water. The minimal effective concentration (MEC) of PS photoinactivation test and PS uptake assay in sterile tap water were explored to determine the anti-Legionella activity. The complete inactivation of Legionella in sterile tap water was achieved with 0.024 μM of the PS. Also, tested PS was found to be very effective in reducing Legionella growth in the sterile tap water and photoinactivation was dose dependent. The tested PS binds well to the bacterial cell, already after 10 minutes of incubation in the dark. In conclusion, these studies indicate that TMPyP3-C17H35 is highly efficient in aPDT that results in reducing Legionella growth in the sterile tap water, and these results suggest that cationic amphiphilic photosensitizers may have a broader application in the photoinactivation of bacterial cells implicated in water disinfection.
Databáze: OpenAIRE