Cleidocranial dysplasia: Molecular genetic analysis and phenotypic‐based description of a Middle European patient groupUwe Baumert and Ilan Golan contributed equally to this study.

Autor: Baumert, Uwe, Golan, Ilan, Redlich, Meir, Aknin, Jean‐Jacques, Muessig, Dieter
Zdroj: American Journal of Medical Genetics. Part A; December 2005, Vol. 139 Issue: 2 p78-85, 8p
Abstrakt: Cleidocranial dysplasia (CCD) (OMIM 119600) is a rare dysplasia of osseous and dental tissue. Characteristic features are typical facial and dental appearance plus morphologic anomalies. RUNX2 (OMIM 600211), the responsible gene for CCD, is considered to be a master gene for bone development and bone homeostasis. This study describes the genotype–phenotype correlation based on craniofacial features involving an interdisciplinary approach. Our patient cohort consisted of 31 CCD patients from 20 families; five patients from two families were unavailable for clinical examination. Since CCD mostly affects the craniofacial region, phenotypic characterization of each individual focused on craniofacial and dental aspects. After recording patient medical and family history, the phenotypic data was analyzed using homogeneity analysis (HOMALS), a statistical procedure for data reduction in categorical data analysis. The coding sequence of the RUNX2 gene was analyzed using PCR, direct sequencing, and restriction endonuclease digestion. Eight unpublished and four known heterozygous mutations in a total of 14/20 index patients (70%) were identified. In total, we detected 7 missense mutations, 5 frameshift mutations, and 2 nonsense mutations in 14 index patients (35%, 25%, 10%, respectively). The overall CCD phenotype varied from mild to fullblown expression. Using HOMALS, we were able to discriminate four groups of patients showing significant differences in phenotypic expressivity, thereby simplifying the grouping of our large patient cohort into clear distinguishable entities. Analysis of the mutation patterns revealed that mutational frequency and types of mutations found can be attributed to the gene's structure and function. © 2005 Wiley‐Liss, Inc.
Databáze: Supplemental Index