Multiple Effects of Codon Usage Optimization on Expression and Immunogenicity of DNA Candidate Vaccines Encoding the Human Immunodeficiency Virus Type 1 Gag Protein

Autor: Deml, Ludwig, Bojak, Alexandra, Steck, Stephanie, Graf, Marcus, Wild, Jens, Schirmbeck, Reinhold, Wolf, Hans, Wagner, Ralf
Zdroj: The Journal of Virology; November 2001, Vol. 75 Issue: 22 p10991-11001, 11p
Abstrakt: ABSTRACTWe have analyzed the influence of codon usage modifications on the expression levels and immunogenicity of DNA vaccines, encoding the human immunodeficiency virus type 1 (HIV-1) group-specific antigen (Gag). In the presence of Rev, an expression vector containing the wild-type (wt) gaggene flanked by essentialcis-acting sites such as the 5'-untranslated region and 3'-Rev response element supported substantial Gag protein expression and secretion in human H1299 and monkey COS-7 cells. However, only weak Gag production was observed from the murine muscle cell line C2C12. In contrast, optimization of the Gag coding sequence to that of highly expressed mammalian genes (syngag) resulted in an obvious increase in the G+C content and a Rev-independent expression and secretion of Gag in all tested mammalian cell lines, including murine C2C12 muscle cells. Mice immunized intramuscularly with thesyngagplasmid showed Th1-driven humoral and cellular responses that were substantially higher than those obtained after injection of the Rev-dependent wild-type (wt) gagvector system. In contrast, intradermal immunization of both wtgagand syngagvector systems with the particle gun induced a Th2-biased antibody response and no cytotoxic T lymphocytes. Deletion analysis demonstrated that the CpG motifs generated within syngagby codon optimization do not contribute significantly to the high immunogenicity of thesyngagplasmid. Moreover, low doses of coadministered stimulatory phosphorothioate oligodeoxynucleotides (ODNs) had only a weak effect on antibody production, whereas at higher doses immunostimulatory and nonstimulatory ODNs showed a dose-dependent suppression of humoral responses. These results suggest that increased Gag expression, rather than modulation of CpG-driven vector immunity, is responsible for the enhanced immunogenicity of thesyngagDNA vaccine.
Databáze: Supplemental Index