Novel 45-kilodalton leptospiral protein that is processed to a 31-kilodalton growth-phase-regulated peripheral membrane protein.

Autor: Matsunaga, James, Young, Tracy A, Barnett, Jeanne K, Barnett, Dean, Bolin, Carole A, Haake, David A
Zdroj: Infection and Immunity; January 2002, Vol. 70 Issue: 1 p323-34, 12p
Abstrakt: Leptospiral protein antigens are of interest as potential virulence factors and as candidate serodiagnostic and immunoprotective reagents. We identified leptospiral protein antigens by screening a genomic expression library with serum from a rabbit hyperimmunized with formalin-killed, virulent Leptospira kirschneri serovar grippotyphosa. Genes expressing known outer membrane lipoproteins LipL32 and LipL41, the heat shock protein GroEL, and the alpha, beta, and beta' subunits of RNA polymerase were isolated from the library. In addition, a new leptospiral gene that in Escherichia coli expressed a 45-kDa antigen with an amino-terminal signal peptide followed by the spirochetal lipobox Val(-4)-Phe(-3)-Asn(-2)-Ala(-1) (downward arrow)Cys(+1) was isolated. We designated this putative lipoprotein LipL45. Immunoblot analysis of a panel of Leptospira strains probed with LipL45 antiserum demonstrated that many low-passage strains expressed LipL45. In contrast, LipL45 was not detected in high-passage, culture-attenuated strains, suggesting that LipL45 is a virulence-associated protein. In addition, all leptospiral strains tested, irrespective of culture passage, expressed a 31-kDa antigen that was recognized by LipL45 antiserum. Southern blot and peptide mapping studies indicated that this 31-kDa antigen was derived from the carboxy terminus of LipL45; therefore, it was designated P31(LipL45). Membrane fractionation studies demonstrated that P31(LipL45) is a peripheral membrane protein. Finally, we found that P31(LipL45) levels increased as Leptospira entered the stationary phase, indicating that P31(LipL45) levels were regulated. Hamsters infected with L. kirschneri formed an antibody response to LipL45, indicating that LipL45 was expressed during infection. Furthermore, the immunohistochemistry of kidneys from infected hamsters indicated that LipL45 was expressed by L. kirschneri that colonized the renal tubule. These observations suggest that expression of LipL45 responds to environmental cues, including those encountered during infection of a mammalian host.
Databáze: Supplemental Index